This documentation was generated automatically from the AVR Studio part description file ATtiny24.pdf.
sfrb PORTA = $1B;
#define PORTA0 0
#define PORTA1 1
#define PORTA2 2
#define PORTA3 3
#define PORTA4 4
#define PORTA5 5
#define PORTA6 6
#define PORTA7 7
sfrb DDRA = $1A;
#define DDA0 0
#define DDA1 1
#define DDA2 2
#define DDA3 3
#define DDA4 4
#define DDA5 5
#define DDA6 6
#define DDA7 7
sfrb PINA = $19;
#define PINA0 0
#define PINA1 1
#define PINA2 2
#define PINA3 3
#define PINA4 4
#define PINA5 5
#define PINA6 6
#define PINA7 7
sfrb PORTB = $18;
#define PORTB0 0
#define PORTB1 1
#define PORTB2 2
#define PORTB3 3
sfrb DDRB = $17;
#define DDB0 0
#define DDB1 1
#define DDB2 2
#define DDB3 3
sfrb PINB = $16;
#define PINB0 0
#define PINB1 1
#define PINB2 2
#define PINB3 3
sfrb ADCSRB = $03;
#define ACME 6
When this bit is written logic one and the ADC is switched off (ADEN in ADCSR is zero), the ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed description of this bit, see ?Analog Comparator Multiplexed Input? on page 186.
sfrb ACSR = $08;
#define ACIS0 0
These bits determine which comparator events that trigger the Analog Comparator interrupt.
#define ACIS1 1
These bits determine which comparator events that trigger the Analog Comparator interrupt.
#define ACIC 2
When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by the Analog Comparator.
#define ACIE 3
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the analog comparator interrupt is acti-vated. When written logic zero, the interrupt is disabled.
#define ACI 4
This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hard-ware when executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.
#define ACO 5
The output of the analog comparator is synchronized and then directly connected to ACO. The synchronization introduces a delay of 1-2 clock cycles.
#define ACBG 6
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Comparator. See ?Internal Voltage Reference? on page 42.
#define ACD 7
When this bit is written logic one, the power to the analog comparator is switched off. This bit can be set at any time to turn off the analog comparator. This will reduce power consumption in active and idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.
sfrb DIDR0 = $01;
#define ADC0D 0
When this bit is written logic one,the digital input buffer on the AIN0 pin is disabled.The corresponding PIN register bit will always read as zero when this bit is set.When an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not needed,this bit should be written logic one to reduce power consumption in the digital input buffer.
#define ADC1D 1
When this bit is written logic one,the digital input buffer on the AIN1 pin is disabled.The corresponding PIN register bit will always read as zero when this bit is set.When an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not needed,this bit should be written logic one to reduce power consumption in the digital input buffer.
sfrb ADMUX = $07;
#define MUX0 0
#define MUX1 1
#define MUX2 2
#define MUX3 3
#define MUX4 4
#define MUX5 5
#define REFS0 6
#define REFS1 7
sfrb ADCSRA = $06;
#define ADPS0 0
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.
#define ADPS1 1
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.
#define ADPS2 2
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.
#define ADIE 3
When this bit is set (one) and the I-bit in SREG is set (one), the ADC Conversion Complete Interrupt is activated.
#define ADIF 4
This bit is set (one) when an ADC conversion completes and the data registers are updated. The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set (one). ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a read-modify-write on ADCSR, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions are used.
#define ADATE 5
When this bit is written to one,Auto Triggering of the ADC is enabled.The ADC will start a conversion on a positive edge of the selected trigger signal.The trigger source is selected by setting the ADC Trigger Select bits,ADTS in ADCSRB.
#define ADSC 6
In Single Conversion Mode, a logical ?1? must be written to this bit to start each conversion. In Free Running Mode, a logical ?1? must be written to this bit to start the first conversion. The first time ADSC has been written after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled, an extended conversion will result. This extended conversion performs initialization of the ADC. ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to zero. When a dummy conversion precedes a real conversion, ADSC will stay high until the real conversion completes. Writing a 0 to this bit has no effec
#define ADEN 7
Writing a logical ?1? to this bit enables the ADC. By clearing this bit to zero, the ADC is turned off. Turning the ADC off while a conversion is in progress, will terminate this conversion.
sfrb ADCH = $05;
#define ADCH0 0
#define ADCH1 1
#define ADCH2 2
#define ADCH3 3
#define ADCH4 4
#define ADCH5 5
#define ADCH6 6
#define ADCH7 7
sfrb ADCL = $04;
#define ADCL0 0
#define ADCL1 1
#define ADCL2 2
#define ADCL3 3
#define ADCL4 4
#define ADCL5 5
#define ADCL6 6
#define ADCL7 7
sfrb ADCSRB = $03;
#define ADTS0 0
If ADATE in ADCSRA is written to one,the value of these bits selects which source will trigger an ADC conversion.If ADATE is cleared,the ADTS2:0 settings will have no effect.A conversion will be triggered by the rising edge of the selected interrupt flag.Note that switching from a trigger source that is cleared to a trigger source that is set,will generate a positive edge on the trigger signal.If ADEN in ADCSRA is set,this will start a conversion.Switching to Free Running Mode (ADTS [2:0 ]=0)will not cause a trigger event,even if the ADC Interrupt Flag is set .
#define ADTS1 1
If ADATE in ADCSRA is written to one,the value of these bits selects which source will trigger an ADC conversion.If ADATE is cleared,the ADTS2:0 settings will have no effect.A conversion will be triggered by the rising edge of the selected interrupt flag.Note that switching from a trigger source that is cleared to a trigger source that is set,will generate a positive edge on the trigger signal.If ADEN in ADCSRA is set,this will start a conversion.Switching to Free Running Mode (ADTS [2:0 ]=0)will not cause a trigger event,even if the ADC Interrupt Flag is set .
#define ADTS2 2
If ADATE in ADCSRA is written to one,the value of these bits selects which source will trigger an ADC conversion.If ADATE is cleared,the ADTS2:0 settings will have no effect.A conversion will be triggered by the rising edge of the selected interrupt flag.Note that switching from a trigger source that is cleared to a trigger source that is set,will generate a positive edge on the trigger signal.If ADEN in ADCSRA is set,this will start a conversion.Switching to Free Running Mode (ADTS [2:0 ]=0)will not cause a trigger event,even if the ADC Interrupt Flag is set .
#define ADLAR 4
#define BIN 7
The gain stage is working in the unipolar mode as default, but the bipolar mode can be selected by writing the BIN bit in the ADCSRB register.
sfrb DIDR0 = $01;
#define ADC0D 0
#define ADC1D 1
#define ADC2D 2
#define ADC3D 3
#define ADC4D 4
#define ADC5D 5
#define ADC6D 6
#define ADC7D 7
Universal Serial Interface
sfrb USIBR = $10;
#define USIBR0 0
#define USIBR1 1
#define USIBR2 2
#define USIBR3 3
#define USIBR4 4
#define USIBR5 5
#define USIBR6 6
#define USIBR7 7
sfrb USIDR = $0F;
#define USIDR0 0
#define USIDR1 1
#define USIDR2 2
#define USIDR3 3
#define USIDR4 4
#define USIDR5 5
#define USIDR6 6
#define USIDR7 7
sfrb USISR = $0E;
#define USICNT0 0
#define USICNT1 1
#define USICNT2 2
#define USICNT3 3
#define USIDC 4
#define USIPF 5
#define USIOIF 6
#define USISIF 7
sfrb USICR = $0D;
#define USITC 0
#define USICLK 1
#define USICS0 2
#define USICS1 3
#define USIWM0 4
#define USIWM1 5
#define USIOIE 6
#define USISIE 7
sfrb MCUCR = $35;
#define ISC00 0
#define ISC01 1
sfrb GIMSK = $3B;
#define PCIE0 4
#define PCIE1 5
#define INT0 6
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU general Control Register (MCUCR) defines whether the external interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from program memory address $001. See also ?External Interrupts.? ? Bits 5..0 - Res: Reserved bits
sfrb GIFR = $3A;
#define PCIF0 4
#define PCIF1 5
#define INTF0 6
When an event on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and the INT0 bit in GIMSK are set (one), the MCU will jump to the interrupt vector at address $001. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
sfrb PCMSK1 = $20;
#define PCINT8 0
#define PCINT9 1
#define PCINT10 2
#define PCINT11 3
sfrb PCMSK0 = $12;
#define PCINT0 0
#define PCINT1 1
#define PCINT2 2
#define PCINT3 3
#define PCINT4 4
#define PCINT5 5
#define PCINT6 6
#define PCINT7 7
EEPROM Read/Write Access. The EEPROM access registers are accessible in the I/O space. The write access time for the EEPROM is given in Table 1. A self-timing function, however, lets the user software detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some precautions must be taken. In heavily filtered power supplies, V CC is likely to rise or fall slowly on power-up/down. This causes the device for some period of time to run at a voltage lower than specified as minimum for the clock frequency used. See ?Preventing EEPROM Corruption? on page 19. for details on how to avoid problems in these situations.In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the description of the EEPROM Control Register for details on this. When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When theEEPROM is written, the CPU is halted for two clock cycles before the next instruction is execut
sfrb EEARH = $1F;
#define EEAR8 0
sfrb EEARL = $1E;
#define EEAR0 0
#define EEAR1 1
#define EEAR2 2
#define EEAR3 3
#define EEAR4 4
#define EEAR5 5
#define EEAR6 6
#define EEAR7 7
sfrb EEDR = $1D;
#define EEDR0 0
#define EEDR1 1
#define EEDR2 2
#define EEDR3 3
#define EEDR4 4
#define EEDR5 5
#define EEDR6 6
#define EEDR7 7
sfrb EECR = $1C;
#define EERE 0
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read access takes one instruction, and the requested data is available immediately. When the EEPROM is read, the CPU is halted for four cycles before the next instruction is executed. The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is neither possible to read the EEPROM, nor to change the EEAR register. The calibrated oscillator is used to time the EEPROM accesses. Table 1 lists the typical programming time for EEPROM access from the CPU
#define EEPE 1
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM. The EEMWE bit must be set when the logical one is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential): 1. Wait until EEWE becomes zero. 2. Wait until SPMEN in SPMCR becomes zero. 3. Write new EEPROM address to EEAR (optional). 4. Write new EEPROM data to EEDR (optional). 5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR. 6. Within four clock cycles after setting EEMWE, write a logical one to EEWE. The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software contains a boot loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ?Boot Loader Support - Read While Write self-programming? on page 228 for details about boot programming. Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR or EEDR regis-ter will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared during the 4 last steps to avoid these problems. When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before the next instruc-tion is executed
#define EEMPE 2
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is written to one, writing EEWE to one within 4 clock cycles will write data to the EEPROM at the selected address. If EEMWE is zero, writing EEWE to one will have no effect. When EEMWE has been written to one by software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.
#define EERIE 3
EEPROM Ready Interrupt Enable Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEWE is cleared.
#define EEPM0 4
The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing EEPE. It is possible to program data in one atomic operation (erase the old value and program the new value) or to split the Erase and Write operations in two different operations. The Programming times for the different modes are shown in Table 2. While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.
#define EEPM1 5
The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing EEPE. It is possible to program data in one atomic operation (erase the old value and program the new value) or to split the Erase and Write operations in two different operations. The Programming times for the different modes are shown in Table 2. While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busy programming.
sfrb WDTCSR = $21;
#define WDP0 0
#define WDP1 1
#define WDP2 2
#define WDE 3
When the WDE is set (one) the Watchdog Timer is enabled, and if the WDE is cleared (zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit is set(one). To disable an enabled watchdog timer, the following procedure must be followed: 1. In the same operation, write a logical one to WDTOE and WDE. A logical one must be written to WDE even though it is set to one before the disable operation starts. 2. Within the next four clock cycles, write a logical 0 to WDE. This disables the watchdog
#define WDCE 4
#define WDP3 5
#define WDIE 6
#define WDIF 7
sfrb TIMSK0 = $39;
#define TOIE0 0
#define OCIE0A 1
#define OCIE0B 2
sfrb TIFR0 = $38;
#define TOV0 0
#define OCF0A 1
#define OCF0B 2
sfrb TCCR0A = $30;
#define WGM00 0
#define WGM01 1
#define COM0B0 4
#define COM0B1 5
#define COM0A0 6
#define COM0A1 7
sfrb TCCR0B = $33;
#define CS00 0
#define CS01 1
#define CS02 2
#define WGM02 3
#define FOC0B 6
#define FOC0A 7
sfrb TCNT0 = $32;
#define TCNT0_0 0
#define TCNT0_1 1
#define TCNT0_2 2
#define TCNT0_3 3
#define TCNT0_4 4
#define TCNT0_5 5
#define TCNT0_6 6
#define TCNT0_7 7
sfrb OCR0A = $36;
#define OCR0_0 0
#define OCR0_1 1
#define OCR0_2 2
#define OCR0_3 3
#define OCR0_4 4
#define OCR0_5 5
#define OCR0_6 6
#define OCR0_7 7
sfrb OCR0B = $3C;
#define OCR0_0 0
#define OCR0_1 1
#define OCR0_2 2
#define OCR0_3 3
#define OCR0_4 4
#define OCR0_5 5
#define OCR0_6 6
#define OCR0_7 7
sfrb GTCCR = $23;
#define PSR0 0
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both timers.
#define TSM 7
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware, and the Timer/Counters start counting simultaneousl
sfrb TIMSK1 = $0C;
#define TOIE1 0
When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set in the Timer/Counter Interrupt Flag Register - TIFR.
#define OCIE1A 1
When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at vector $004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the OCF1A bit is set in the Timer/Counter Interrupt Flag Register - TIFR.
#define OCIE1B 2
When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the OCF1B bit is set in the Timer/Counter Interrupt Flag Register - TIFR.
#define ICIE1 5
When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Input Capture Event Interrupt is enabled. The corresponding interrupt (at vector $003) is executed if a capture-triggering event occurs on pin ICP, i.e., when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register - TIFR.
sfrb TIFR1 = $0B;
#define TOV1 0
The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by hardware when executing the cor-responding interrupt handling vector. Alternatively, TOV1 is cleared by writing a logic one to the flag. When the I-bit in SREG, and TOIE1 (Timer/Counter1 Overflow Interrupt Enable), and TOV1 are set (one), the Timer/Counter1 Overflow Interrupt is executed. In PWM mode, this bit is set when Timer/Counter1 changes counting direction at $0000.
#define OCF1A 1
The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1A - Output Compare Register 1A. OCF1A is cleared by hardware when executing the corresponding interrupt handling vector. Alterna-tively, OCF1A is cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1A (Timer/Counter1 Compare match InterruptA Enable), and the OCF1A are set (one), the Timer/Counter1 Compare A match Interrupt is executed.
#define OCF1B 2
The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1B - Output Compare Register 1B. OCF1B is cleared by hardware when executing the corresponding interrupt handling vector. Alterna-tively, OCF1B is cleared by writing a logic one to the flag. When the I-bit in SREG, and OCIE1A (Timer/Counter1 Compare match InterruptB Enable), and the OCF1B are set (one), the Timer/Counter1 Compare B match Interrupt is executed.
#define ICF1 5
The ICF1 bit is set (one) to flag an input capture event, indicating that the Timer/Counter1 value has been transferred to the input capture register - ICR1. ICF1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ICF1 is cleared by writing a logic one to the flag. When the SREG I-bit, and TICIE1 (Timer/Counter1 Input Capture Interrupt Enable), and ICF1 are set (one), the Timer/Counter1 Capture Interrupt is executed.
sfrb TCCR1A = $2F;
#define WGM10 0
#define WGM11 1
#define COM1B0 4
#define COM1B1 5
#define COM1A0 6
The COM1A1 and COM1A0 control bits determine any output pin action following a compare match in Timer/Counter1. Any output pin actions affect pin OC1A - Output CompareA pin 1. This is an alternative function to an I/O port and the corresponding direction control bit must be set (one) to control the output pin. The control configuration is shown in the databook.
#define COM1A1 7
The COM1A1 and COM1A0 control bits determine any output pin action following a compare match in Timer/Counter1. Any output pin actions affect pin OC1A - Output CompareA pin 1. This is an alternative function to an I/O port and the corresponding direction control bit must be set (one) to control the output pin. The control configuration is shown in the databook.
sfrb TCCR1B = $2E;
#define CS10 0
#define CS11 1
#define CS12 2
#define WGM12 3
#define WGM13 4
#define ICES1 6
While the ICES1 bit is cleared (zero), the Timer/Counter1 contents are transferred to the Input Capture Register - ICR1 - on the falling edge of the input capture pin - ICP. While the ICES1 bit is set (one), the Timer/Counter1 contents are transferred to the Input Capture Register - ICR1 - on the rising edge of the input capture pin - ICP.
#define ICNC1 7
When the ICNC1 bit is cleared (zero), the input capture trigger noise canceler function is disabled. The input capture is triggered at the first rising/falling edge sampled on the ICP - input capture pin - as specified. When the ICNC1 bit is set (one), four successive samples are measures on the ICP - input capture pin, and all samples must be high/low according to the input capture trigger specification in the ICES1 bit. The actual sampling frequency is XTAL clock frequency.
sfrb TCCR1C = $22;
#define FOC1B 6
The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensuring compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced compare. A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always read as zero
#define FOC1A 7
The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensuring compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced compare. A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always read as zero
sfrb TCNT1H = $2D;
#define TCNT1H0 0
#define TCNT1H1 1
#define TCNT1H2 2
#define TCNT1H3 3
#define TCNT1H4 4
#define TCNT1H5 5
#define TCNT1H6 6
#define TCNT1H7 7
sfrb TCNT1L = $2C;
#define TCNT1L0 0
#define TCNT1L1 1
#define TCNT1L2 2
#define TCNT1L3 3
#define TCNT1L4 4
#define TCNT1L5 5
#define TCNT1L6 6
#define TCNT1L7 7
sfrb OCR1AH = $2B;
#define OCR1AH0 0
#define OCR1AH1 1
#define OCR1AH2 2
#define OCR1AH3 3
#define OCR1AH4 4
#define OCR1AH5 5
#define OCR1AH6 6
#define OCR1AH7 7
sfrb OCR1AL = $2A;
#define OCR1AL0 0
#define OCR1AL1 1
#define OCR1AL2 2
#define OCR1AL3 3
#define OCR1AL4 4
#define OCR1AL5 5
#define OCR1AL6 6
#define OCR1AL7 7
sfrb OCR1BH = $29;
#define OCR1AH0 0
#define OCR1AH1 1
#define OCR1AH2 2
#define OCR1AH3 3
#define OCR1AH4 4
#define OCR1AH5 5
#define OCR1AH6 6
#define OCR1AH7 7
sfrb OCR1BL = $28;
#define OCR1AL0 0
#define OCR1AL1 1
#define OCR1AL2 2
#define OCR1AL3 3
#define OCR1AL4 4
#define OCR1AL5 5
#define OCR1AL6 6
#define OCR1AL7 7
sfrb ICR1H = $25;
#define ICR1H0 0
#define ICR1H1 1
#define ICR1H2 2
#define ICR1H3 3
#define ICR1H4 4
#define ICR1H5 5
#define ICR1H6 6
#define ICR1H7 7
sfrb ICR1L = $24;
#define ICR1L0 0
#define ICR1L1 1
#define ICR1L2 2
#define ICR1L3 3
#define ICR1L4 4
#define ICR1L5 5
#define ICR1L6 6
#define ICR1L7 7
sfrb PRR = $00;
#define PRADC 0
#define PRUSI 1
#define PRTIM0 2
#define PRTIM1 3
sfrb OSCCAL = $31;
#define CAL0 0
#define CAL1 1
#define CAL2 2
#define CAL3 3
#define CAL4 4
#define CAL5 5
#define CAL6 6
#define CAL7 7
sfrb CLKPR = ;
#define CLKPS0 0
These bits define the division factor between the selected clock source and the internal system clock. These bits can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
#define CLKPS1 1
These bits define the division factor between the selected clock source and the internal system clock. These bits can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
#define CLKPS2 2
These bits define the division factor between the selected clock source and the internal system clock. These bits can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
#define CLKPS3 3
These bits define the division factor between the selected clock source and the internal system clock. These bits can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
#define CLKPCE 7
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the CLKPCE bit.
sfrb SREG = $3F;
sfrb SPH = $3E;
#define SP8 0
#define SP9 1
sfrb SPL = $3D;
#define SP0 0
#define SP1 1
#define SP2 2
#define SP3 3
#define SP4 4
#define SP5 5
#define SP6 6
#define SP7 7
sfrb MCUCR = $35;
#define SM0 3
#define SM1 4
#define SE 5
#define PUD 6
sfrb MCUSR = $34;
#define PORF 0
This bit is set if a power-on reset occurs. The bit is reset only by writing a logic zero to the flag. To make use of the reset flags to identify a reset condition, the user should read and then reset the MCUCSR as early as possible in the program. If the register is cleared before another reset occurs, the source of the reset can be found by examining the reset flags.
#define EXTRF 1
This bit is set if an external reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
#define BORF 2
This bit is set if a brown-out reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
#define WDRF 3
This bit is set if a watchdog reset occurs. The bit is reset by a power-on reset, or by writing a logic zero to the flag.
sfrb GPIOR2 = $15;
#define GPIOR20 0
#define GPIOR21 1
#define GPIOR22 2
#define GPIOR23 3
#define GPIOR24 4
#define GPIOR25 5
#define GPIOR26 6
#define GPIOR27 7
sfrb GPIOR1 = $14;
#define GPIOR10 0
#define GPIOR11 1
#define GPIOR12 2
#define GPIOR13 3
#define GPIOR14 4
#define GPIOR15 5
#define GPIOR16 6
#define GPIOR17 7
sfrb GPIOR0 = $13;
#define GPIOR00 0
#define GPIOR01 1
#define GPIOR02 2
#define GPIOR03 3
#define GPIOR04 4
#define GPIOR05 5
#define GPIOR06 6
#define GPIOR07 7