This documentation was generated automatically from the AVR Studio part description file ATtiny12.pdf.
The analog comparator compares the input values on the positive input PB2 (AIN0) and negative input PB3 (AIN1). When the voltage on the positive input PB2 (AIN0) is higher than the voltage on the negative input PB3 (AIN1), the Analog Com-parator Output, ACO is set (one). The comparator?s output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can select Inter-rupt triggering on comparator output rise, fall or toggle
sfrb ACSR = $08;
#define ACIS0 0
These bits determine which comparator events that trigger the Analog Comparator interrupt.
#define ACIS1 1
These bits determine which comparator events that trigger the Analog Comparator interrupt.
#define ACIE 3
When the ACIE bit is set (one) and the I-bit in the Status Register is set (one), the analog comparator interrupt is activated. When Cleared (Zero), the interrupt is disabled.
#define ACI 4
This bit is set (one) when a comparator output event triggers the interrupt mode defined by ACI1 and ACI0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set (one) and the I-bit in SREG is set (one). ACI is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag. Observe however, that if another bit in this register is modified using the SBI or CBI instruction, ACI will be cleared if it has become set before the operation
#define ACO 5
When this bit is set(one), the power to the analog comparator is switched off. This bit can be set at any time to turn off the analog comparator. This will reduce power consumption in active and idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.
#define AINBG 6
#define ACD 7
When this bit is set(one), the power to the analog comparator is switched off. This bit can be set at any time to turn off the analog comparator. This will reduce power consumption in active and idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.
sfrb SREG = $3F;
sfrb MCUCR = $35;
#define ISC00 0
#define ISC01 1
#define SM 4
This bit selects between the two available sleep modes. When SM is cleared (zero), Idle Mode is selected as Sleep Mode. When SM is set (one), Power Down mode is selected as sleep mode. For details, refer to the section ?Sleep Modes? on page 25.
#define SE 5
The SE bit must be set (one) to make the MCU enter the sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmers purpose, it is recommended to set the Sleep Enable SE bit just before the execution of the SLEEP instruction.
#define PUD 6
sfrb MCUSR = $34;
#define PORF 0
This bit is set by a power-on reset. A watchdog reset or an external reset will leave this bit unchanged
#define EXTRF 1
After a power-on reset, this bit is undefined (X). It will be set by an external reset. A watchdog reset will leave this bit unchanged.
#define BORF 2
#define WDRF 3
sfrb OSCCAL = $31;
#define CAL0 0
#define CAL1 1
#define CAL2 2
#define CAL3 3
#define CAL4 4
#define CAL5 5
#define CAL6 6
#define CAL7 7
sfrb GIMSK = $3B;
#define PCIE 5
#define INT0 6
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU general Control Register (MCUCR) defines whether the external interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from program memory address $001. See also ?External Interrupts.? ? Bits 5..0 - Res: Reserved bits
sfrb GIFR = $3A;
#define PCIF 5
#define INTF0 6
When an event on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and the INT0 bit in GIMSK are set (one), the MCU will jump to the interrupt vector at address $001. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it.
sfrb EEAR = $1E;
#define EEAR0 0
#define EEAR1 1
#define EEAR2 2
#define EEAR3 3
#define EEAR4 4
#define EEAR5 5
sfrb EEDR = $1D;
#define EEDR0 0
#define EEDR1 1
#define EEDR2 2
#define EEDR3 3
#define EEDR4 4
#define EEDR5 5
#define EEDR6 6
#define EEDR7 7
sfrb EECR = $1C;
#define EERE 0
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address is set up in the EEAR register, the EERE bit must be set. When the EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register. The EEPROM read access takes one instruction and there is no need to poll the EERE bit. When EERE has been set, the CPU is halted for four cycles before the next instruction is executed. The user should poll the EEWE bit before starting the read operation. If a write operation is in progress when new data or address is written to the EEPROM I/O registers, the write operation will be interrupted, and the result is undefined.
#define EEWE 1
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM. The EEMWE bit must be set when the logical one is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when writing the EEPROM (the order of steps 2 and 3 is unessential): 1. Wait until EEWE becomes zero. 2. Write new EEPROM address to EEARL and EEARH (optional). 3. Write new EEPROM data to EEDR (optional). 4. Write a logical one to the EEMWE bit in EECR (to be able to write a logical one to the EEMWE bit, the EEWE bit mustbewritten to zero in thesamecycle). 5. Within four clock cycles after setting EEMWE, write a logical one to EEWE. When the write access time (typically 2.5 ms at V CC =5Vor 4msatV CC = 2.7V) has elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted or two cycles before the next instruction is executed. Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR or EEDR regis-ter will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared during the 4 last steps to avoid these problems.
#define EEMWE 2
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is set(one) setting EEWE will write data to the EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has been set (one) by software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for a EEPROM write procedure.
#define EERIE 3
When the I-bit in SREG and EERIE are set (one), the EEPROM Ready Interrupt is enabled. When cleared (zero), the interrupt is disabled. The EEPROM Ready Interrupt generates a constant interrupt when EEWE is cleared (zero).
sfrb PORTB = $18;
#define PORTB0 0
#define PORTB1 1
#define PORTB2 2
#define PORTB3 3
#define PORTB4 4
sfrb DDRB = $17;
#define DDB0 0
#define DDB1 1
#define DDB2 2
#define DDB3 3
#define DDB4 4
#define DDB5 5
sfrb PINB = $16;
#define PINB0 0
#define PINB1 1
#define PINB2 2
#define PINB3 3
#define PINB4 4
#define PINB5 5
The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK, or an external pin. In addition it can be stopped as described in ?Timer/Counter0 Control Register - TCCR0? on page 35. The overflow status flag is found in ?The Timer/Counter Interrupt Flag Register - TIFR? on page 29. Control signals are found in the Timer/Counter0 Control Register - TCCR0. The interrupt enable/disable settings for Timer/Counter0 are found in ?The Timer/Counter Interrupt Mask Regis-ter - TIMSK? on page 28. When Timer/Counter0 is externally clocked, the external signal is synchronized with the oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum time between two external clock transitions must be at least one internal CPU clock period. The external clock signal is sampled on the rising edge of the internal CPU clock. The 8-bit Timer/Counter0 features both a high resolution and a high accuracy usage with the lower prescaling opportuni-ties. Similarly, the high prescaling opportuni ties make the Timer/Counter0 useful for lower speed functions or exact timing functions with infrequent actions
sfrb TIMSK = $39;
#define TOIE0 1
When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter Interrupt Flag Register - TIFR.
sfrb TIFR = $38;
#define TOV0 1
The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, and TOIE0 (Timer/Counter0 Overflow Interrupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed.
sfrb TCCR0 = $33;
#define CS00 0
#define CS01 1
#define CS02 2
sfrb TCNT0 = $32;
#define TCNT00 0
#define TCNT01 1
#define TCNT02 2
#define TCNT03 3
#define TCNT04 4
#define TCNT05 5
#define TCNT06 6
#define TCNT07 7
sfrb WDTCR = $21;
#define WDP0 0
#define WDP1 1
#define WDP2 2
#define WDE 3
When the WDE is set (one) the Watchdog Timer is enabled, and if the WDE is cleared (zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit is set(one). To disable an enabled watchdog timer, the following procedure must be followed: 1. In the same operation, write a logical one to WDTOE and WDE. A logical one must be written to WDE even though it is set to one before the disable operation starts. 2. Within the next four clock cycles, write a logical 0 to WDE. This disables the watchdog
#define WDTOE 4
This bit must be set (one) when the WDE bit is cleared. Otherwise, the watchdog will not be disabled. Once set, hardware will clear this bit to zero after four clock cycles. Refer to the description of the WDE bit for a watchdog disable procedure.