

UM10527 LPC11Axx User manual Rev. 5 — 21 January 2013

User manual

Document information

Info	Content
Keywords	LPC11Axx
Abstract	LPC11Axx User manual

UM10527 NXP Semiconductors

Rev	Date	Description						
5	20130121	LPC11Axx User manual						
	Modifications:							
	 Bit position of the MATCH_ALL bit corrected in <u>Table 126 "I2C Monitor mode control register (MMCTRL -</u> 							
	0x4000 001C) bit description".							
		ues of type A and type I registers corrected in Section 6.4 "Register description".						
		.8 "Start-up timing" added for clarification.						
4	20121015	LPC11Axx User manual						
	Modifications:							
		instruction breakpoints from feature list for SWD. See Section 24.2.						
	ExplainedEditorial t	I use of interrupts with Power profiles in Section 23.3 "General description". updates.						
3	20120903	LPC11Axx User manual						
	Modifications:							
	 Description of SWD pins updated in Table 283 "Serial Wire Debug pin description". 							
	 Description of the IOCON registers PIO0_2 and PIO0_3 updated in Table 82. 							
	Default pin configuration added for WLCSP packages in Section 6.1.							
	 Description of boundary scan mode added in Section 24.5.4. 							
	 Debug limitations explained in Section 24.5.1. 							
	 SWD connections added in Section 24.5.3. 							
		'System oscillator control register (SYSOSCCTRL, address 0x4004 8020) bit description" addec P and HVQFN packages only).						
	 ADC Sing description 	ple-burst mode added. See Table 198 "A/D Control Register (CR - address 0x4001 C000) bit n".						
	 I2C ROM 	driver description updated in Chapter 22 "LPC11Axx I2C-bus ROM driver routines".						
	 Section 3 	.6.1 "Under-Voltage Lockout (UVLO) reset behavior" added.						
2	20120607	LPC11Axx User manual						
	Modifications:							
	FREQSE	L bit values updated in Table 10 and Table 12.						
	 SRAM us 	e by bootloader specified in Section 20.2.						
	 Description of interrupt use with IAP calls updated (see Section 20.5.2.8). 							
	•	on of ISP Go command updated (only Thumb mode allowed).						
	Update E Section 2	EPROM write command. The top 64 bytes are reserved for the 4 kB EEPROM only (see 0.8.10).						
	 Reset sou 	urces updated (see Section 3.6).						
	 Part IDs a 	added in Table 33 and Table 228.						
1	20120322	Preliminary LPC11Axx user manual						

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10527

LPC11Axx

UM10527

Chapter 1: Introductory information

Rev. 5 — 21 January 2013

User manual

1.1 Introduction

The LPC11Axx are an ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for 8/16-bit microcontroller applications, offering performance, low power, simple instruction set and memory addressing together with reduced code size compared to existing 8/16-bit architectures.

The LPC11Axx operate at CPU frequencies of up to 50 MHz.

Analog/mixed-signal subsystems can be configured by software from interconnected digital and analog peripherals.

The digital peripherals on the LPC11Axx include up to 32 kB of flash memory, up to 4 kB of EEPROM data memory, up to 8 kB of SRAM data memory, a Fast-mode Plus I²C-bus interface, a RS-485/EIA-485 USART, two SSP controllers, four general purpose counter/timers, and up to 42 general purpose I/O pins.

Analog peripherals include a 10-bit ADC, a 10-bit DAC, an analog comparator, a temperature sensor, an internal voltage reference, and UnderVoltage LockOut (UVLO) protection.

1.2 Features

System:

- ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.
- ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).
- Serial Wire Debug (SWD)
- JTAG boundary scan.
- System tick timer.

Memory:

- Up to 32 kB on-chip flash program memory.
- Up to 4 kB on-chip EEPROM data memory; byte erasable and byte programmable.
- Up to 8 kB SRAM data memory.
- 16 kB boot ROM.
- In-System Programming (ISP) for flash and In-Application Programming (IAP) for flash and EEPROM via on-chip bootloader software.
- Includes ROM-based 32-bit integer division and I²C-bus driver routines.

Digital peripherals:

- Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors, repeater mode, and open-drain mode.
- Up to 16 pins are configurable with a digital input glitch filter for removing glitches with widths of 10 ns or less and two pins are configurable for 50 ns glitch filters.
- GPIO pins can be used as edge and level sensitive interrupt sources.

Chapter 1: Introductory information

- High-current source output driver (20 mA) on one pin (PIO0_21).
- High-current sink driver (20 mA) on true open-drain pins (PIO0_2 and PIO0_3).
- Four general purpose counter/timers with a total of up to 16 capture inputs and 14 match outputs.
- Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal low-power WatchDog Oscillator (WDOsc).

Analog peripherals:

- 10-bit ADC with input multiplexing among 8 pins.
- 10-bit DAC with flexible conversion triggering.
- Highly flexible analog comparator with a programmable voltage reference.
- Integrated temperature sensor.
- Internal voltage reference.
- UnderVoltage Lockout (UVLO) protection against power-supply drop below 2.4 V.

Serial interfaces:

- USART with fractional baud rate generation, internal FIFO, support for RS-485/9-bit mode and synchronous mode.
- Two SSP controllers with FIFO and multi-protocol capabilities. Support data rates of up to 25 Mbit/s.
- I²C-bus interface supporting the full I²C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode.

· Clock generation:

- Crystal Oscillator (SysOsc) with an operating range of 1 MHz to 25 MHz.
- 12 MHz internal RC Oscillator (IRC) trimmed to 1% accuracy that can optionally be used as a system clock.
- Internal low-power, Low-Frequency Oscillator (LFOsc) with programmable frequency output.
- Clock input for external system clock (25 MHz typical).
- PLL allows CPU operation up to the maximum CPU rate with the IRC, the external clock, or the SysOsc as clock sources.
- Clock output function with divider that can reflect the SysOsc, the IRC, the main clock, or the LFOsc.

Power control:

- Supports one reduced power mode: The ARM Sleep mode.
- Power profiles residing in boot ROM allowing to optimize performance and minimize power consumption for any given application through one simple function call.
- Processor wake-up from reduced power mode using any interrupt.
- Power-On Reset (POR).
- Brown-Out Detect (BOD) with two programmable thresholds for interrupt and one hardware controlled reset trip point.
- POR and BOD are always enabled for rapid UVLO protection against power supply voltage drop below 2.4 V.

UM10527

Chapter 1: Introductory information

- Unique device serial number for identification.
- Single 3.3 V power supply (2.6 V to 3.6 V).
- Temperature range -40 °C to +85 °C.
- Available as LQFP48 package, HVQFN33 (7 \times 7) and HVQFN33 (5 \times 5) packages, and in a very small WLCSP20 package.

1.3 Ordering information

Table 1. Ordering information

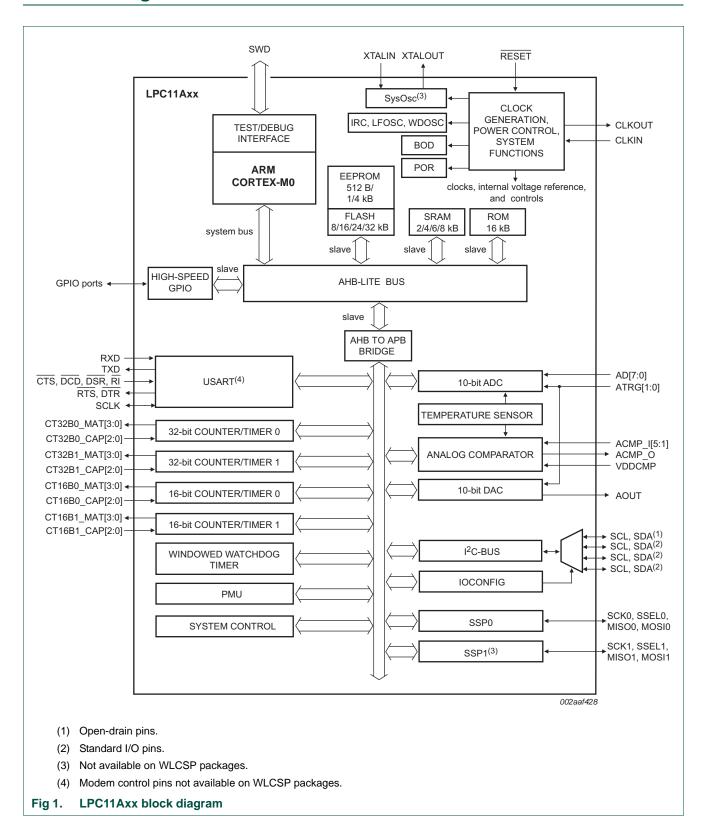
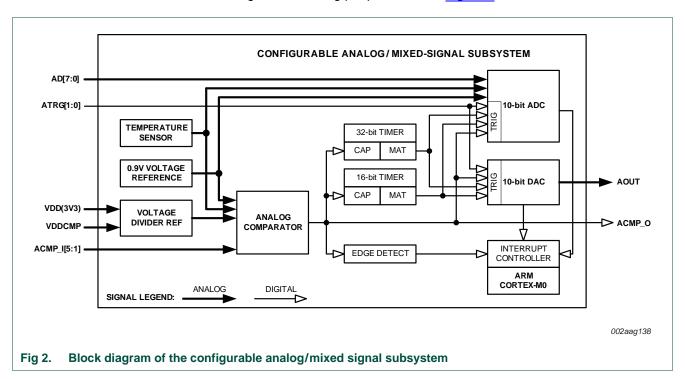

Type number	Package	Package						
	Name	Description	Version					
LPC11A02UK	WLCSP20	wafer level chip-size package; 20 bumps; $2.5 \times 2.5 \times 0.6$ mm	-					
LPC11A04UK	WLCSP20	wafer level chip-size package; 20 bumps; $2.5 \times 2.5 \times 0.6$ mm	-					
LPC11A11FHN33/001	HVQFN33	HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a					
LPC11A12FHN33/101	HVQFN33	HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 \times 7 \times 0.85 mm	n/a					
LPC11A13FHI33/201	HVQFN33	HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 5 \times 5 \times 0.85 mm	n/a					
LPC11A14FHN33/301	HVQFN33	HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body $7 \times 7 \times 0.85$ mm	n/a					
LPC11A12FBD48/101	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body 7 \times 7 \times 1.4 mm	sot313-2					
LPC11A14FBD48/301	LQFP48	LQFP48: plastic low profile quad flat package; 48 leads; body 7 \times 7 \times 1.4 mm	sot313-2					

Table 2. Ordering options

Type number	Flash	SRAM	EEPROM	10-bit ADC channels	10-bit DAC	Temperature sensor	Analog comparator	USART	SSP/SPI	l²C	GPIO	Package
LPC11A02UK	16 kB	4 kB	2 kB	8	1	1	1	1	1	1	18	WLCSP20
LPC11A04UK	32 kB	8 kB	4 kB	8	1	1	1	1	1	1	18	WLCSP20
LPC11A11FHN33/001	8 kB	2 kB	512 B	8	1	1	1	1	2	1	28	HVQFN33
LPC11A12FHN33/101	16 kB	4 kB	1 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A12FBD48/101	16 kB	4 kB	1 kB	8	1	1	1	1	2	1	42	LQFP48
LPC11A13FHI33/201	24 kB	6 kB	2 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A14FHN33/301	32 kB	8 kB	4 kB	8	1	1	1	1	2	1	28	HVQFN33
LPC11A14FBD48/301	32 kB	8 kB	4 kB	8	1	1	1	1	2	1	42	LQFP48

Chapter 1: Introductory information


1.4 Block diagram

Chapter 1: Introductory information

1.5 Configurable analog/mixed-signal subsystems

Multiple analog/mixed-signal subsystems can be configured by software from interconnected digital and analog peripherals. See Figure 2.

1.6 ARM Cortex-M0 processor

The ARM Cortex-M0 processor is described in detail in <u>Section 25.2 "About the Cortex-M0 processor and core peripherals"</u>. For the LPC11Axx, the ARM Cortex-M0 processor core is configured as follows:

- System options:
 - Nested Vectored Interrupt Controller (NVIC) supports up to 32 interrupts.
 - System tick timer.
- Debug options:
 - JTAG debug/utility interface.
 - Serial Wire Debug with two watchpoints and four breakpoints.

UM10527

Chapter 2: LPC11Axx Memory map

Rev. 5 — 21 January 2013

User manual

2.1 How to read this chapter

See Table 3 for the memory configuration of the LPC11Axx parts.

Table 3. LPC11Axx memory configuration

	, ,		
Part	Flash	SRAM	EEPROM
LPC11A02	16 kB	4 kB	2 kB
LPC11A04	32 kB	8 kB	4 kB[1]
LPC11A11/001	8 kB	2 kB	512 B
LPC11A12/101	16 kB	4 kB	1 kB
LPC11A13/201	24 kB	6 kB	2 kB
LPC11A14/301	32 kB	8 kB	4 kB[1]

^[1] Top 64 byte are reserved for 4 kB EEPROM.

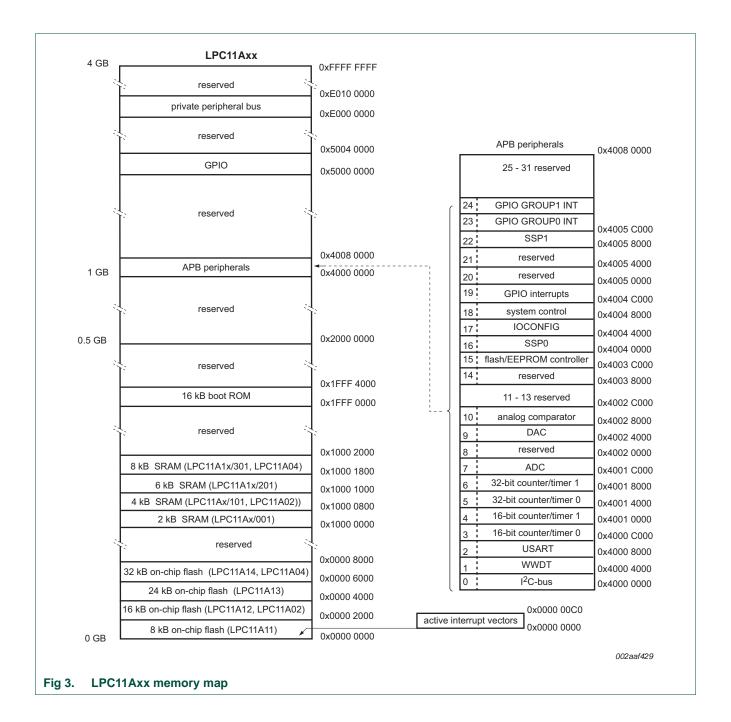

2.2 Memory map

Figure 1 shows the memory and peripheral address space of the LPC11Axx.

The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. On the LPC11Axx, the GPIO ports are the only AHB peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each AHB or APB peripheral is allocated 16 kB of space.

All APB register addresses are 32-bit word aligned regardless of their size. All accesses to APB registers are treated as word accesses by the peripheral. It is not possible to write individual bytes or halfwords of an APB register separately.

Chapter 2: LPC11Axx Memory map

UM10527

Chapter 3: LPC11Axx System configuration

Rev. 5 — 21 January 2013

User manual

3.1 How to read this chapter

The system control block is identical for all LPC11Axx parts.

The SPI1 interface is not available on WLCSP20 parts.

The SYSOSCCTRL register is reserved on the WLCSP20 parts.

3.2 Introduction

The system configuration block controls oscillators and clock generation of the LPC11Axx. Also included in this block are registers for setting priority for AHB access and for remapping flash, SRAM, and ROM memory areas.

3.3 Pin description

<u>Table 4</u> shows pins that are associated with system control block functions.

Table 4. Pin summary

Pin name	Pin direction	Pin description
CLKIN	1	Clock in pin
CLKOUT	0	Clock out pin

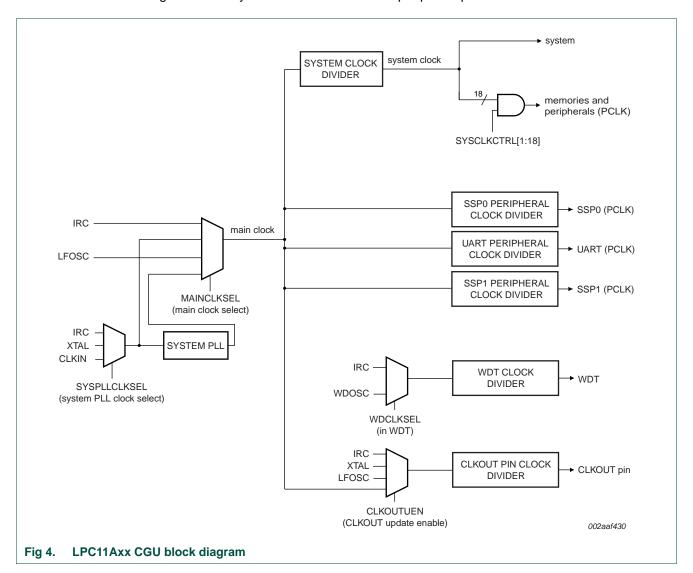
3.4 Clocking and Power Control

3.4.1 Clocking

See Figure 4 for an overview of the LPC11Axx Clock Generation Unit (CGU).

The LPC11Axx includes four oscillators: a crystal oscillator (XTAL), a 12 MHz High Frequency oscillator (IRC) and the programmable Low Frequency and Watchdog oscillators (LFOSC, WDOSC). The XTAL, IRC, and LFOSC can be used for multiple purposes in a particular application.

The clock source for the PLL can be the crystal oscillator, the IRC or an external clock on the CLKIN pin, as selected by the SYSPLLCLKSEL register.


After reset the LPC11Axx will operate from the IRC unless switched by software.

The SYSAHBCLKCTRL register gates the system clock to the various peripherals and memories. The UART and SSP interfaces and the Watchdog and SysTick timers have individual clock dividers to derive peripheral clocks from the main clock.

Any clock can be output directly, or divided by factor between 2 and 255, on the CLKOUT pin.

Chapter 3: LPC11Axx System configuration

The term "PCLK" is an abbreviation for "Peripheral Clock" and is used in subsequent chapters to indicate the clock provided to an APB peripheral. Figure 4 shows several signals that may be called PCLK from the peripheral point of view.

3.4.2 Power Control

The LPC11Axx supports a variety of power control features. Power and clocks to selected blocks of the LPC11Axx can be optimized to minimize power consumption when the chip is running.

3.5 Register description

All Syscon registers are on word address boundaries. Details of the registers appear in the description of each function.

See <u>Section 3.11</u> for the flash access timing register, which can be re-configured as part the system setup. This register is not part of the system configuration block.

UM10527

Chapter 3: LPC11Axx System configuration

All address offsets not shown in <u>Table 5</u> are reserved and should not be written.

Table 5. Register overview: system control block (base address 0x4004 8000)

Name	Access	Offset	Description	Reset value	Reference
SYSMEMREMAP	R/W	0x0	System memory remap	0x02	Table 6
PRESETCTRL	R/W	0x004	Peripheral reset control	0	Table 7
SYSPLLCTRL	R/W	800x0	System PLL control	0	Table 8
SYSPLLSTAT	R	0x00C	System PLL status	0	Table 9
SYSOSCCTRL	R/W	0x020	System oscillator control	0x000	Table 10
WDTOSCCTRL	R/W	0x024	Watchdog oscillator control	0x0A0	Table 11
IRCCTRL	R/W	0x028	IRC oscillator control	0x0xx	Table 12
LFOSCCTRL	R/W	0x02C	LF oscillator control	0x0A0	Table 13
SYSRSTSTAT	R/W	0x030	System reset status register	0	Table 14
SYSPLLCLKSEL	R/W	0x040	System PLL clock source select	0	Table 15
SYSPLLCLKUEN	R/W	0x044	System PLL clock source update enable	0	Table 16
MAINCLKSEL	R/W	0x070	Main clock source select	0	Table 17
MAINCLKUEN	R/W	0x074	Main clock source update enable	0	Table 18
SYSAHBCLKDIV	R/W	0x078	System clock divider	0x001	Table 19
SYSAHBCLKCTRL	R/W	0x080	System clock control	0x01F	Table 20
SSP0CLKDIV	R/W	0x094	SSP0 clock divider	0	Table 21
UARTCLKDIV	R/W	0x098	UART clock divider	0	Table 22
SSP1CLKDIV	R/W	0x09C	SSP1 clock divider	0	Table 23
-	-	0x0A0 to 0x0DC	Reserved	-	-
CLKOUTSEL	R/W	0x0E0	CLKOUT clock source select	0	Table 24
CLKOUTUEN	R/W	0x0E4	CLKOUT clock source update enable	0	Table 25
CLKOUTDIV	R/W	0x0E8	CLKOUT clock divider	0	Table 26
PIOPORCAP0	R	0x100	POR captured PIO status 0	user dependent	Table 27
PIOPORCAP1	R	0x104	POR captured PIO status 1	user dependent	Table 28
BODR	R/W	0x150	Brown-Out Detect	0	Table 29
SYSTCKCAL	R/W	0x158	System tick counter calibration	0x004	Table 30
NMISRC	R/W	0x174	NMI Source Control	0	Table 31
PINTSEL0	R/W	0x178	GPIO Pin Interrupt Select register 0	0	Table 32
PINTSEL1	R/W	0x17C	GPIO Pin Interrupt Select register 1	0	Table 32
PINTSEL2	R/W	0x180	GPIO Pin Interrupt Select register 2	0	Table 32
PINTSEL3	R/W	0x184	GPIO Pin Interrupt Select register 3	0	Table 32
PINTSEL4	R/W	0x188	GPIO Pin Interrupt Select register 4	0	Table 32
PINTSEL5	R/W	0x18C	GPIO Pin Interrupt Select register 5	0	Table 32
PINTSEL6	R/W	0x190	GPIO Pin Interrupt Select register 6	0	Table 32
PINTSEL7	R/W	0x194	GPIO Pin Interrupt Select register 7	0	Table 32
-	R/W	0x198 - 0x234	Reserved	-	-
PDRUNCFG	R/W	0x238	Power configuration register	0x0000 EDF0	Table 33
DEVICE_ID	R	0x3F4	Device ID	part dependent	Table 34

Chapter 3: LPC11Axx System configuration

3.5.1 System memory remap register

The system memory remap register selects whether the exception vectors are read from the boot ROM, the flash, or the SRAM.

By default, the flash memory is mapped to address 0x0000 0000. When the MAP bits in the SYSMEMREMAP register are set to 0x0 or 0x1, the boot ROM or RAM respectively are mapped to the bottom 512 bytes of the memory map.

Table 6. System memory remap register (SYSMEMREMAP, address 0x4004 8000) bit description

		•		
Bit	Symbol	Value	Description	Reset value
1:0 MAP S			System memory remap	0x2
		0x0	Boot Loader Mode. Interrupt vectors are re-mapped to Boot ROM.	
		0x1	User RAM Mode. Interrupt vectors are re-mapped to Static RAM.	
		0x2	User Flash Mode. Interrupt vectors are not re-mapped and reside in Flash.	
		0x3	Reserved	
31:2	-	-	Reserved	-

3.5.2 Peripheral reset control register

This register allows software to reset specific peripherals. A 0 in an assigned bit in this register resets the specified peripheral. A 1 negates the reset and allows peripheral operation.

Table 7. Peripheral reset control register (PRESETCTRL, address 0x4004 8004) bit description

Bit	Symbol	Value	Description	Reset value
0	SSP0_RST_N		SSP0 reset control	1
		0	Resets the SSP0 peripheral.	
		1	SSP0 reset de-asserted.	
1	I2C_RST_N		I2C reset control	1
		0	Resets the I2C peripheral.	
		1	I2C reset de-asserted.	
2	SSP1_RST_N		SSP1 reset control	1
		0	Resets the SSP1 peripheral.	
		1	SSP1 reset de-asserted.	
3	-		Reserved	-
4	UART_RST_N		UART reset control	1
		0	Resets the UART peripheral.	
		1	UART reset de-asserted.	
5	CT16B0_RST_N		CT16B0 reset control	1
		0	Resets the CT16B0 peripheral.	
		1	CT16B0 reset de-asserted.	

UM10527

Chapter 3: LPC11Axx System configuration

Table 7. Peripheral reset control register (PRESETCTRL, address 0x4004 8004) bit description

Bit	Symbol	Value	Description	Reset value	
6	CT16B1_RST_N		CT16B1 reset control	1	
		0	Resets the CT16B1 peripheral.		
		1	CT16B1 reset de-asserted.		
7	CT32B0_RST_N		CT32B0 reset control	1	
		0	Resets the CT32B0 peripheral.		
		1	CT32B0 reset de-asserted.		
8	CT32B1_RST_N		CT32B1 reset control	1	
		0	Resets the CT32B1 peripheral.		
		1	CT32B1 reset de-asserted.		
9	ACOMP_RST_N		Analog comparator reset control	1	
		0	Resets the Analog comparator peripheral.		
		1	Analog comparator reset de-asserted.		
10	DAC_RST_N		DAC reset control	1	
		0	Resets the DAC peripheral.		
		1	DAC reset de-asserted.		
11	ADC_RST_N		ADC reset control	1	
		0	Resets the ADC peripheral.		
		1	ADC reset de-asserted.		
31:12	-	-	Reserved	-	

3.5.3 System PLL control register

This register connects and enables the system PLL and configures the PLL multiplier and divider values. The PLL accepts an input frequency from 10 MHz to 25 MHz from various clock sources. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock used by the CPU, peripherals, and memories. The PLL can produce a clock up to the maximum allowed for the CPU.

The PLL operating mode is set by the DIRECT and BYPASS bits (see Table 36).

Table 8. System PLL control register (SYSPLLCTRL, address 0x4004 8008) bit description

Bit	Symbol	Value	Description	Reset value
4:0	MSEL		Feedback divider value. The division value M is the programmed MSEL value + 1. 00000: Division ratio M = 1 to 11111: Division ratio M = 32	0

Chapter 3: LPC11Axx System configuration

Table 8. System PLL control register (SYSPLLCTRL, address 0x4004 8008) bit description

Bit	Symbol	Value	Description	Reset value
6:5	PSEL		Post divider ratio P. The division ratio is $2 \times P$.	0
		0x0	P = 1	
		0x1	P = 2	
		0x2	P = 4	
		0x3	P = 8	
31:7	-	-	Reserved. Do not write ones to reserved bits.	-

3.5.4 System PLL status register

This register is a Read-only register and supplies the PLL lock status (see Section 3.10.1).

Table 9. System PLL status register (SYSPLLSTAT, address 0x4004 800C) bit description

Bit	Symbol	Value	Description	Reset value
0	LOCK		PLL lock status	0
		0	PLL not locked	
		1	PLL locked	
31:1	-	-	Reserved	-

3.5.5 System oscillator control register

This register configures the frequency range for the system oscillator.

Table 10. System oscillator control register (SYSOSCCTRL, address 0x4004 8020) bit description

Bit	Symbol	Value	Description	Reset value
0	BYPASS		Bypass system oscillator	0x0
		0	Oscillator is not bypassed.	
		1	Bypass enabled. PLL input (sys_osc_clk) is fed directly from the XTALIN pin bypassing the oscillator. Use this mode when using an external clock source instead of the crystal oscillator.	
1	FREQRANGE		Determines frequency range for Low-power oscillator.	0x0
		0	1 - 20 MHz frequency range.	
		1	15 - 25 MHz frequency range	
31:2	-	-	Reserved	0x00

3.5.6 Watchdog oscillator control register

This register configures the watchdog oscillator. The oscillator consists of an analog and a digital part. The analog part contains the oscillator function and generates an analog clock (F_{clkana}). The FREQSEL field selects F_{clkana} between 0.6 MHz and 4.6 MHz. In the digital part, F_{clkana} is divided to produce the oscillator output clock under the control of the DIVSEL field.

Chapter 3: LPC11Axx System configuration

The output clock frequency can be calculated as $xxx_osc_clk = Fclkana/(2 \times (1 + DIVSEL))$.

Remark: Any non-zero setting of the FREQSEL field will yield a F_{clkana} value within $\pm 40\%$ of the listed frequency value.

Table 11. Watchdog oscillator control register (WDTOSCCTRL, address 0x4004 8024) bit description

	uescrip			
Bit	Symbol	Value	Description	Reset value
4:0	DIVSEL		Select divider for Fclkana. wdt_osc_clk = Fclkana/ $(2 \times (1 + DIVSEL))$ 00000: $2 \times (1 + DIVSEL) = 2$ 00001: $2 \times (1 + DIVSEL) = 4$ to 11111: $2 \times (1 + DIVSEL) = 64$	0
8:5	FREQSEL		Select watchdog oscillator analog output frequency (Fclkana).	0
		0	Operation is undefined for this value. Startup code should program a non-zero value in this field as soon after reset as possible.	
		0x1	0.6 MHz	
		0x2	1.05 MHz	
		0x3	1.4 MHz	
		0x4	1.75 MHz	
		0x5	2.1 MHz	
		0x6	2.4 MHz	
		0x7	2.7 MHz	
		8x0	3.0 MHz	
		0x9	3.25 MHz	
		0xA	3.5 MHz	
		0xB	3.75 MHz	
		0xC	4.0 MHz	
		0xD	4.2 MHz	
		0xE	4.4 MHz	
		0xF	4.6 MHz	
31:9	-	-	Reserved	-

Chapter 3: LPC11Axx System configuration

3.5.7 High-frequency oscillator control register

This register is used to trim the on-chip 12 MHz oscillator. The trim value is factory-preset and written by the boot code on start-up.

Table 12. High-frequency oscillator control register (IRCCTRL, address 0x4004 8028) bit description

Bit	Symbol	Description	Reset value
7:0	TRIM	Trim value	programmed during manufacturing
31:9	-	Reserved	-

3.5.8 LF oscillator control register

This register configures the LF oscillator. The LF oscillator consists of an analog and a digital part. The analog part contains the oscillator function and generates an analog clock (F_{clkana}). The FREQSEL field selects F_{clkana} between 0.6 MHz and 4.6 MHz. In the digital part, F_{clkana} is divided to produce the oscillator output clock under the control of the DIVSEL field.

The output clock frequency of the LF oscillator can be calculated as $xxx_osc_clk = Fclkana/(2 \times (1 + DIVSEL)$.

Remark: Any non-zero setting of the FREQSEL field will yield a F_{clkana} value within $\pm 40\%$ of the listed frequency value.

Table 13. LF oscillator control register (LFOSCCTRL, address 0x4004 802C)) bit description

Bit	Symbol	Value	Description	Reset value
4:0	DIVSEL		Select divider for Fclkana.	0

Chapter 3: LPC11Axx System configuration

Table 13. LF oscillator control register (LFOSCCTRL, address 0x4004 802C)) bit description ...continued

		ieu		
Bit	Symbol	Value	Description	Reset value
8:5	FREQSEL		Select watchdog oscillator analog output frequency (Fclkana).	0
		0	Operation is undefined for this value. Startup code should program a non-zero value in this field as soon after reset as possible.	
		0x1	0.6 MHz	
		0x2	1.05 MHz	
		0x3	1.4 MHz	
		0x4	1.75 MHz	
		0x5	2.1 MHz	
		0x6	2.4 MHz	
		0x7	2.7 MHz	
		0x8	3.0 MHz	
		0x9	3.25 MHz	
		0xA	3.5 MHz	
		0xB	3.75 MHz	
		0xC	4.0 MHz	
		0xD	4.2 MHz	
		0xE	4.4 MHz	
		0xF	4.6 MHz	
31:9	-	-	Reserved	-

Chapter 3: LPC11Axx System configuration

3.5.9 System reset status register

If another reset signal - for example the external RESET pin - remains asserted after the POR signal is negated, then its bit is set to detected. Write a one to clear the reset.

The reset value given in <u>Table 14</u> applies to the POR reset.

Table 14. System reset status register (SYSRSTSTAT, address 0x4004 8030) bit description

Bit	Symbol	Value	Description	Reset value
0	POR		POR reset status	0
		0	No POR detected	
		1	POR detected	
1	EXTRST		External reset status	0
		0	No RESET event detected	
		1	RESET detected	
2	WDT		Status of the Watchdog reset	0
		0	No WDT reset detected	
		1	WDT reset detected	
3	BOD		Status of the Brown-out detect reset	0
		0	No BOD reset detected	
		1	BOD reset detected	
4	SYSRST		Status of the software system reset	0
		0	No System reset detected	
		1	System reset detected	
31:5	-		Reserved	-

3.5.10 System PLL clock source select register

This register selects the clock source for the system PLL. The SYSPLLCLKUEN register (see Section 3.5.11) must be toggled from LOW to HIGH for the update to take effect.

Table 15. System PLL clock source select register (SYSPLLCLKSEL, address 0x4004 8040) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		System PLL clock source	0
		0x0	IRC	
		0x1	Crystal Oscillator (XTAL)	
		0x2	CLKIN pin	
		0x3	Reserved	
31:2	-	-	Reserved	-

Chapter 3: LPC11Axx System configuration

3.5.11 System PLL clock source update register

This register updates the clock source of the system PLL with the new input clock after the SYSPLLCLKSEL register has been written to. In order for the update to take effect, first write a zero to the SYSPLLUEN register and then write a one to SYSPLLUEN.

Table 16. System PLL clock source update enable register (SYSPLLCLKUEN, address 0x4004 8044) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable system PLL clock source update	0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	-

3.5.12 Main clock source select register

This register selects the main system clock which can come from the system PLL (sys_pllclkout) or the watchdog or IRC oscillator. The main system clock clocks the core, the peripherals, and the memories.

Bit 0 of the MAINCLKUEN register (see <u>Section 3.5.13</u>) must be toggled from 0 to 1 for the update to take effect.

Table 17. Main clock source select register (MAINCLKSEL, address 0x4004 8070) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		Clock source for main clock	0
		0x0	IRC Oscillator	
		0x1	PLL input	
		0x2	LF Oscillator	
		0x3	PLL output	
31:2	-	-	Reserved	-

3.5.13 Main clock source update enable register

This register updates the clock source of the main clock with the new input clock after the MAINCLKSEL register has been written to. In order for the update to take effect, first write a zero to bit 0 of this register, then write a one.

Table 18. Main clock source update enable register (MAINCLKUEN, address 0x4004 8074) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable main clock source update	0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	-

Chapter 3: LPC11Axx System configuration

3.5.14 System clock divider register

This register controls how the main clock is divided to provide the system clock to the core, memories, and the peripherals. The system clock can be shut down completely by setting the DIV field to zero.

Table 19. System clock divider register (SYSAHBCLKDIV, address 0x4004 8078) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	System AHB clock divider values 0: System clock disabled. 1: Divide by 1. to 255: Divide by 255.	0x01
31:8	-	Reserved	-

3.5.15 System clock control register

The SYSAHBCLKCTRL register enables the clocks to individual system and peripheral blocks. The system clock (bit 0) provides the clock for the AHB, the APB bridge, the ARM Cortex-M0, the Syscon block, and the PMU. This clock cannot be disabled.

Table 20. System clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description

Bit	Symbol	Value	Description	Reset value
0	SYS		Enables the clock for the AHB, the APB bridge, the Cortex-M0 FCLK and HCLK, SysCon, and the PMU. This bit is read only and always reads as 1.	1
		0	Reserved	
		1	Enable	
1	ROM		Enables clock for ROM.	1
		0	Disable	
		1	Enable	
2	RAM		Enables clock for RAM.	1
		0	Disable	
		1	Enable	
3	FLASHREG		Enables clock for flash/EEPROM register interface.	1
		0	Disabled	
		1	Enabled	
4	FLASHARRAY		Enables clock for flash/EEPROM array access.	1
		0	Disabled	
		1	Enabled	
5	I2C		Enables clock for I2C.	1
		0	Disable	
		1	Enable	

Chapter 3: LPC11Axx System configuration

Table 20. System clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description ...continued

	description	continue	d	
Bit	Symbol	Value	Description	Reset value
6	GPIO		Enables clock for GPIO.	0
		0	Disable	
		1	Enable	
7	CT16B0		Enables clock for 16-bit counter/timer 0.	0
		0	Disable	
		1	Enable	
8	CT16B1		Enables clock for 16-bit counter/timer 1.	0
		0	Disable	
		1	Enable	
9	CT32B0		Enables clock for 32-bit counter/timer 0.	0
		0	Disable	
		1	Enable	
10	CT32B1		Enables clock for 32-bit counter/timer 1.	0
		0	Disable	
		1	Enable	
11	SSP0		Enables clock for SSP0.	0
		0	Disable	
		1	Enable	
12	UART		Enables clock for UART. Note that the UART pins must be configured in the IOCON block before the UART clock can be enabled.	0
		0	Disable	
		1	Enable	
13	ADC		Enables clock for ADC.	0
		0	Disable	
		1	Enable	
14	-		Reserved	0
15	WDT		Enables clock for WDT.	0
		0	Disable	
		1	Enable	
16	IOCON		Enables clock for I/O configuration block.	0
		0	Disable	
		1	Enable	
17	-		Reserved	0
18	SSP1		Enables clock for SSP1.	0
		0	Disable	
		1	Enable	
19	PINT		GPIO Pin interrupts	0
		0	Disable	
		1	Enable	

Chapter 3: LPC11Axx System configuration

Table 20. System clock control register (SYSAHBCLKCTRL, address 0x4004 8080) bit description ...continued

Bit	Symbol	Value	Description	Reset value
20	ACOMP		Enables clock for ACOMP.	0
		0	Disable	
		1	Enable	
21	DAC		Enables clock for DAC.	0
		0	Disable	
		1	Enable	
22	-		Reserved	-
23	POINT		GPIO Port 0 interrupt	0
		0	Disable	
		1	Enable	
24	P1INT		GPIO Port 1interrupt	0
		0	Disable	
		1	Enable	
31:25	-	-	Reserved	-

3.5.16 SSP0 clock divider register

This register configures the SSP0 peripheral clock SPI0_PCLK. SPI0_PCLK can be shut down by setting the DIV field to zero.

Table 21. SSP0 clock divider register (SSP0CLKDIV, address 0x4004 8094) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	SSP0_PCLK clock divider values 0: Disable SSP1_PCLK. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.17 UART clock divider register

This register configures the UART peripheral clock UART_PCLK. The UART_PCLK can be shut down by setting the DIV field to zero.

Remark: Note that the UART pins must be configured in the IOCON block before the UART clock can be enabled.

Chapter 3: LPC11Axx System configuration

Table 22. UART clock divider register (UARTCLKDIV, address 0x4004 8098) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	UART_PCLK clock divider values 0: Disable UART_PCLK. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.18 SSP1 clock divider register

This register configures the SSP1 peripheral clock SPI1_PCLK. SPI1_PCLK can be shut down by setting the DIV field to zero.

Table 23. SSP1 clock divider register (SSP1CLKDIV, address 0x4004 809C) bit description

		•	
Bit	Symbol	Description	Reset value
7:0	DIV	SSP1_PCLK clock divider values 0: Disable SSP1_PCLK. 1: Divide by 1. to 255: Divide by 255. Disable SPI1_PCLK. Divide by 1 Divide by 255.	0
31:8	-	Reserved	-

3.5.19 CLKOUT clock source select register

This register selects the signal to be the output on the CLKOUT pin. Any oscillator or the main clock can be selected.

Bit 0 of the CLKOUTUEN register (see <u>Section 3.5.20</u>) must be toggled from 0 to 1 for the update to take effect.

Table 24. CLKOUT clock source select register (CLKOUTSEL, address 0x4004 80E0) bit description

Bit	Symbol	Value	Description	Reset value
1:0	SEL		CLKOUT clock source	0
		0x0	IRC oscillator	
		0x1	Crystal oscillator (XTAL)	
		0x2	LF oscillator	
		0x3	Main clock	
31:2	-	-	Reserved	0

Chapter 3: LPC11Axx System configuration

3.5.20 CLKOUT clock source update enable register

This register updates the clock source of the CLKOUT pin with the new clock after the CLKOUTSEL register has been written to. In order for the update to take effect at the input of the CLKOUT pin, first write a zero to bit 0 of this register, then write a one.

Table 25. CLKOUT clock source update enable register (CLKOUTUEN, address 0x4004 80E4) bit description

Bit	Symbol	Value	Description	Reset value
0	ENA		Enable CLKOUT clock source update	0
		0	No change	
		1	Update clock source	
31:1	-	-	Reserved	-

3.5.21 CLKOUT clock divider register

This register determines the divider value for the signal on the CLKOUT pin.

Table 26. CLKOUT clock divider registers (CLKOUTDIV, address 0x4004 80E8) bit description

Bit	Symbol	Description	Reset value
7:0	DIV	CLKOUT clock divider values 0: Disable CLKOUT clock divider. 1: Divide by 1. to 255: Divide by 255.	0
31:8	-	Reserved	-

3.5.22 POR captured PIO status register 0

The PIOPORCAP0 register captures the state of GPIO port 0 at power-on-reset. Each bit represents the reset state of one GPIO pin. This register is a read-only status register.

Table 27. POR captured PIO status register 0 (PIOPORCAP0, address 0x4004 8100) bit description

Bit	Symbol	Description	Reset value
31:0	PIOSTAT	State of PIO0_31 through PIO0_0 at power-on reset	NC by other resets

3.5.23 POR captured PIO status register 1

The PIOPORCAP1 register captures the state of GPIO port 1 at power-on-reset. Each bit represents the reset state of one GPIO pin. This register is a read-only status register.

Table 28. POR captured PIO status register 1 (PIOPORCAP1, address 0x4004 8104) bit description

Bit	Symbol	Description	Reset value
9:0	PIOSTAT	State of PIO1_9 through PIO1_0 at power-on reset	NC by other resets
31:10	-	Reserved	-

UM10527

Chapter 3: LPC11Axx System configuration

3.5.24 Brown-out Detect register

The Brown-Out Detect circuit monitors the voltage on the VDD supply. If it is below a certain threshold, the circuit requests an interrupt. The BOD register selects the thresholds for interrupt. The thresholds shown in Table 29 are typical values (see LPC11Axx data sheet).

The BOD interrupt can be enabled in the <u>Section 25.5.2.2 "Interrupt Set-enable Register"</u> and disabled in the <u>Section 25.5.2.3 "Interrupt Clear-enable Register"</u>, using the bit number corresponding to the IRQ number for the BOD that's called out in <u>Table 38</u>.

Table 29. Brown-Out Detect register (BODR, address 0x4004 8150) bit description

Bit	Symbol	Value	Description	Reset value
1:0	-		Reserved	0
3:2	BODINTVAL		BOD interrupt threshold	0x2
		0x2	Level 2: the interrupt assertion threshold voltage is 2.52 V; the interrupt de-assertion threshold voltage is 2.66 V.	
		0x3	Level 3: the interrupt assertion threshold voltage is 2.80 V; the interrupt de-assertion threshold voltage is 2.90 V.	
4	-		Reserved	0
5	-		Reserved	0
6	BODINT		This bit is 1 if the BOD is requesting an interrupt.	0
31:7	-	-	Reserved	-

3.5.25 System tick counter calibration register

Table 30. System tick timer calibration register (SYSTCKCAL, address 0x4004 8158) bit description

Bit	Symbol	Description	Reset value
25:0	CAL	System tick timer calibration value	0x4
31:26	-	Reserved	-

3.5.26 NMI source selection register

Table 31. NMI source selection register (NMISRC, address 0x4004 8174) bit description

Bit	Symbol	Description	Reset value
4:0	IRQNO	The IRQ number of the interrupt that is to act as the Non-Maskable interrupt (NMI) if bit 31 is 1. See <u>Section 4.3</u> for the list of interrupt sources and their IRQ numbers.	0
30:5	-	Reserved	-
31	NMIEN	Write a 1 to this bit to enable the Non-Maskable Interrupt (NMI) source selected by bits 4:0.	0

Note: If the NMISRC register is used to select an interrupt as the source of Non-Maskable interrupts, and the selected interrupt is enabled, one interrupt request can result in both a Non-Maskable and a normal interrupt. This can be avoided by disabling the normal interrupt in the NVIC, as described in <u>Section 25.5.2</u>.

Chapter 3: LPC11Axx System configuration

3.5.27 Pin interrupt select registers

Each of these 8 registers selects one GPIO pin from all GPIO pins on both ports as the source of a pin interrupt.

Each of the 8 pin interrupts must be enabled in the NVIC using interrupt slots # 0 to 7 (see Table 38).

To enable each pin interrupt and configure its edge or level sensitivity, use the GPIO pin interrupt registers (Table 40).

Table 32. Pin interrupt select registers (PINTSEL0 to 7, address 0x4004 8178 to 0x4004 8194) bit description

Bit	Symbol	Description	Reset value
4:0	INTPIN	The pin number within the port identified by the INTPORT field.	0
5	INTPORT	Select the port: 0 = P0 pin. 1 = P1 pin.	
31:6	-	Reserved	-

3.5.28 Power configuration register

The PDRUNCFG register controls the power to the various analog blocks. This register can be written to at any time while the chip is running, and a write will take effect immediately with the exception of the power-down signal to the IRC.

To avoid glitches when powering down the IRC, the IRC clock is automatically switched off at a clean point. Therefore, for the IRC a delay is possible before the power-down state takes effect.

Table 33. Power configuration register (PDRUNCFG, address 0x4004 8238) bit description

Bit	Symbol	Value	Description	Reset value	
0	IRCOUT_PD		IRC oscillator output power-down	0	
		1	Powered down		
		0	Powered		
1	IRC_PD		IRC oscillator power-down	0	
		1	Powered down		
		0	Powered		
2	FLASH_PD	FLASH_PD		Flash power-down	0
			1 Powered down	Powered down	
		0	Powered		
3	-		Reserved	1	
4	ADC_PD		ADC power-down	1	
		1	Powered down		
		0	Powered		
5	XTAL_PD		Crystal oscillator power-down	1	
		1	Powered down		
		0	Powered		

UM10527

Chapter 3: LPC11Axx System configuration

Table 33. Power configuration register (PDRUNCFG, address 0x4004 8238) bit description

Bit	Symbol	Value	Description	Reset value	
6 WI	WDTOSC_PD		Watchdog oscillator power-down	1	
		1	Powered down		
		0	Powered		
7	SYSPLL_PD		System PLL power-down	1	
		1	Powered down		
		0	Powered		
8	-		Reserved	1	
9	-		Reserved. This bit must be set to zero during normal operation in Run mode.	0	
10	-		Reserved	1	
11	-		Reserved. This bit must be set to one in Run mode.	1	
12	-		Reserved.	0	
13	LFOSC_PD		Low frequency oscillator power-down	1	
		1	Powered down		
		0	Powered		
14	DAC_PD		DAC power-down	_ 1	
		1	Powered down		
		0	Powered		
15	TS_PD		Temperature Sensor power-down	1	
		1	Powered down		
		0	Powered		
16	ACOMP_PD		Analog Comparator power-down	1	
		1	Powered down		
		0	Powered		
31:17	-	-	Reserved	-	

3.5.29 Device ID register

This device ID register is a read-only register and contains the part ID for each LPC11Axx part. This register is also read by the ISP/IAP commands (see <u>Section 20.7</u> and <u>Section 20.8</u>).

Chapter 3: LPC11Axx System configuration

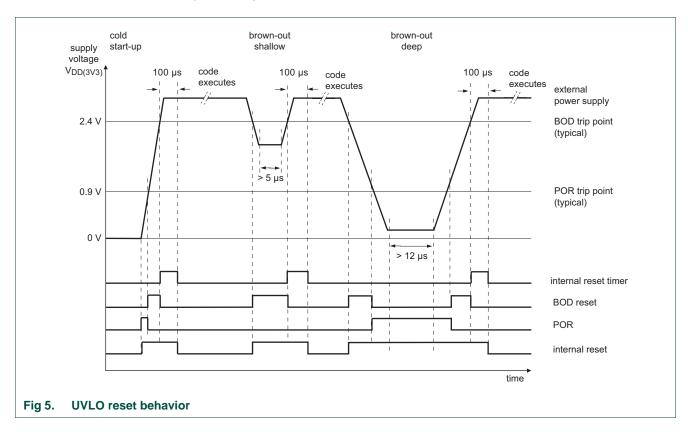
Table 34. Device ID register (DEVICE_ID, address 0x4004 83F4) bit description

Bit	Symbol	Description	Reset value
31:0	DEVICEID	Part ID number for LPC11Axx	-
		LPC11A11FHN33/001 = 0x455E C02B	
		LPC11A12FBD48/101 = 0x4574 802B	
		LPC11A12FHN33/101 = 0x4574 802B	
		LPC11A13FHI33/201 = 0x458A 402B	
		LPC11A14FBD48/301 = 0x35A0 002B; 0x45A0 002B	
		LPC11A14FHN33/301 = 0x35A0 002B; 0x45A0 002B	
		LPC11A02UK = 0x4D4C 802B	
		LPC11A04UK = 0x4D80 002B	

3.6 Reset

Reset has several sources on the LPC11Axx: the RESET pin, Watchdog Reset, Power-On Reset (POR), Brown-Out Detect (BOD), and an internal reset timer. In addition, there is a software reset. The software reset is triggered by writing a 1 to the ARM Cortex-M0 SYSRESETREQ bit (see Table 318).

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.


Chapter 3: LPC11Axx System configuration

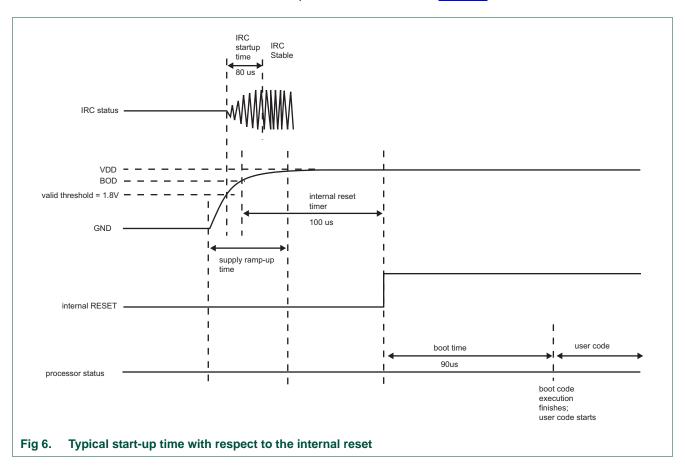
3.6.1 Under-Voltage Lockout (UVLO) reset behavior

The UVLO in this microcontroller uses an always-on reset circuit to keep the part in a safe reset state during brown-out, black-out, and cold start-up situations. The UVLO circuit is comprised of the BOD and POR circuits which hold the part in reset for voltage levels below operating voltage. The POR holds the part in reset below the POR trip point. The always-on BOD reset trigger holds the part in reset for supply voltages between the BOD trip point and the POR trip point. The UVLO circuit is active on both ends of the power cycle: when powering down and powering back up.

Once the BOD has released the BOD reset signal, an internal reset timer releases the internal reset after an additional 100 µs, and the code begins to execute.

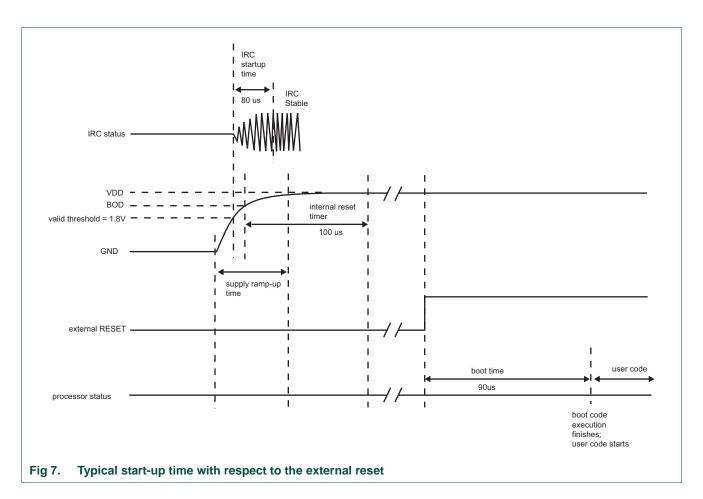
To allow the analog BOD and POR circuits to settle in a shallow or deep brown-out situation, power drop fluctuations should not be shorter than 5 μ s for shallow brown-outs and 12 μ s for deep brown-outs. See also the *LPC11Axx data sheet*.

3.7 Brown-out detection


The LPC11Axx includes a brown-out detect circuit that monitors the voltage on the V_{DD} pin. If this voltage falls below the selected level, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC; if not, software can monitor the signal by reading a dedicated status register. A fixed hardware-enabled threshold assures that the chip is reset if V_{DD} falls below the threshold. See Table 29.

Chapter 3: LPC11Axx System configuration

3.8 Start-up timing


This IRC is the default clock at RESET and provides a clean system clock shortly after the supply voltage reaches the threshold value of 1.8 V. The internal reset timer starts counting when the supply voltage reaches the BOD threshold voltage. Once the internal reset timer has finished counting, the internal reset is released.

If the external reset is not used, then the boot loader will execute immediately after the internal reset timer has expired. This is shown in Figure 6.

If the external reset is used, the boot loader will execute only after the internal reset timer has expired and the external reset is deasserted. This is shown in Figure 7.

Chapter 3: LPC11Axx System configuration

3.9 Power management

Section 3.4.2 describes the reduced-power mode of the LPC11Axx.

The CPU clock rate can be controlled as needed by changing clock sources, re-configuring PLL values, and/or altering the system clock divider value. This allows a trade-off of power versus processing speed based on application requirements.

Run-time power control allows shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals (UART, SysTick timer, Watchdog timer) have their own clock divider for power control.

Remark: Note that the debug mode is not supported in any of the reduced power modes.

Chapter 3: LPC11Axx System configuration

Table 35. LPC11Axx power and clock control registers

Register		Power/clock control function	Applies to modes
Power control			
PDRUNCFG	Table 33	Controls power to the analog blocks (oscillators, PLLs, ADC, DAC, analog comparator, flash, and BOD).	Run
		Remark: Bits 9 and 12 of this register must be zero for proper operation during run mode.	
Clock control			
SYSAHBCLKCTRL	Table 20	Controls clocks to the ARM Cortex-M0 CPU, memories, and individual APB peripherals.	Run
SYSAHBCLKDIV	Table 19	Disables or configures the system clock.	Run
UARTCLKDIV	Table 22	Disables or configures the UART peripheral clock.	Run
CLKOUTDIV	Table 26	Disables or configures the clock on the CLKOUT pin.	Run

3.9.1 Run mode

In Run mode, the ARM Cortex-M0 core, memories, and peripherals are clocked by the system clock. The SYSAHBCLKCTRL register controls which memories and peripherals are running. The system clock frequency can be selected by the SYSAHBCLKDIV register.

Selected peripherals (UART, WDT, and the Systick timer) have individual peripheral clocks with their own clock dividers in addition to the system clock. The peripheral clocks can be shut down through the respective clock divider registers.

The power to various blocks (PLLs, oscillators, the ADC, DAC, analog comparator, BOD circuit, and the flash block) can be controlled individually through the PDRUNCFG register.

Remark: Ensure that bit 9 of the PDRUNCFG register is zero in Run mode.

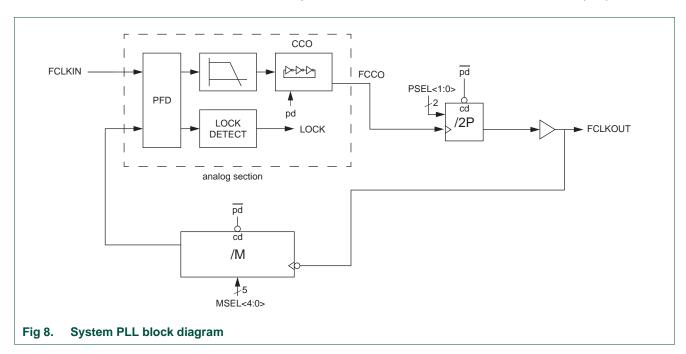
3.9.2 Sleep mode

In sleep mode, the system clock to the ARM Cortex-M0 core is stopped, and execution of instructions is suspended until either a reset or an interrupt occurs.

Sleep mode is entered when software performs the following steps:

- 1. Ensure that the SLEEPDEEP bit is 0 in the Cortex-M0 SCR register (Table 319).
- 2. Execute the Wait-For-Interrupt (WFI) instruction.

Sleep mode is exited automatically when an interrupt arrives at the processor.


Peripheral functions, if selected to be clocked in the SYSAHBCLKCTRL register, continue operation during sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.

The processor state and registers, peripheral registers, and internal SRAM values are maintained and the logic levels of the pins remain static.

Chapter 3: LPC11Axx System configuration

3.10 System PLL functional description

The LPC11Axx uses the system PLL to create the clocks for the core and peripherals.

The block diagram of the PLL is shown in Figure 8. The input frequency range is 10 MHz to 25 MHz. The input clock is fed directly to the Phase-Frequency Detector (PFD). This block compares the phase and frequency of its inputs, and generates a control signal when phase and/ or frequency do not match. The loop filter filters these control signals and drives the current controlled oscillator (CCO), which generates the main clock and optionally two additional phases. The CCO frequency range is 156 MHz to 320 MHz. The CCO output is divided by 2×P by the programmable post divider to create the output clock(s). The main output clock is then divided by M by the programmable feedback divider to generate the feedback clock. The output signal of the phase-frequency detector is also monitored by the lock detector, to signal when the PLL has locked on to the input clock.

3.10.1 Lock detector

The lock detector measures the phase difference between the rising edges of the input and feedback clocks. Only when this difference is smaller than the so called "lock criterion" for more than eight consecutive input clock periods, the lock output switches from low to high. A single too-large phase difference immediately resets the counter and causes the lock signal to drop (if it was high). Requiring eight phase measurements in a row to be below a certain figure ensures that the lock detector will not indicate lock until both the phase and frequency of the input and feedback clocks are well aligned. This effectively prevents false lock indications, and thus ensures a glitch free lock signal.

3.10.2 Direct output mode

In normal operating mode the CCO clock is divided by 2, 4, 8 or 16 depending on the PSEL field, giving an output clock with a 50% duty cycle.

UM10527

Chapter 3: LPC11Axx System configuration

3.10.3 Power-down control

To reduce the power consumption when the PLL clock is not needed, a Power-down mode has been incorporated. This mode is enabled by setting the SYS_PLL_PD bits to one in the Power-down configuration register (Table 33). In this mode, the internal current reference will be turned off, the oscillator and the phase-frequency detector will be stopped and the dividers will enter a reset state. While in Power-down mode, the lock output will be low to indicate that the PLL is not in lock. When the Power-down mode is terminated by setting the SYS_PLL_PD bits to zero, the PLL resumes normal operation and will make the lock signal high once it has regained lock on the input clock.

3.10.4 Operating modes

Table 36. PLL operating modes

Mode	Description	PD bit	BYPASS bit	DIRECT bit
1	Normal mode	0	0	0
3	Power-down mode	1	0	Х

3.10.5 Divider ratio programming

Post divider

The division ratio of the post divider is controlled by the PSEL bits. The division ratio is two times the value of P selected by PSEL bits as shown in <u>Table 8</u>. This guarantees an output clock with a 50% duty cycle.

Feedback divider

The feedback divider's division ratio is controlled by the MSEL bits. The division ratio between the PLL's output clock and the input clock is the decimal value on MSEL bits plus one, as specified in Table 8.

Changing the divider values

Changing the divider ratio while the PLL is running is not recommended. As there is no way to synchronize the change of the MSEL and PSEL values with the dividers, the risk exists that the counter will read in an undefined value, which could lead to unwanted spikes or drops in the frequency of the output clock. The recommended way of changing between divider settings is to power down the PLL, adjust the divider settings and then let the PLL start up again.

3.10.6 Frequency selection

The PLL frequency equations use the following parameters (also see Figure 4):

Table 37. PLL frequency parameters

Parameter	System PLL
FCLKIN	Frequency of sys_pllclkin (input clock to the PLL), from XTAL, IRC, or CLKIN
FCCO	Frequency of the Current Controlled Oscillator (CCO); 156 to 320 MHz.
FCLKOUT	Frequency of sys_pllclkout
Р	System PLL post divider ratio; PSEL bits in SYSPLLCTRL (see Section 3.5.3).
M	System PLL feedback divider register; MSEL bits in SYSPLLCTRL (see Section 3.5.3).

UM10527

Chapter 3: LPC11Axx System configuration

3.10.6.1 Mode 1 (Normal mode)

This mode gives a 50% duty cycle clock with the following frequency relations:

$$Fclkout = M \times Fclkin = \frac{FCCO}{2 \times P}$$

Select integers M and P as follows:

 Given that F_{clkin} is 12 MHz from the IRC, select M in the range 1 to 32 to produce a desired output frequency

$$Fclkout = M \times 12MHz$$

2. Verify that for one of the values P = 1, 2, 4, or 8,

$$FCCO = Fclkout \times 2 \times P$$

is in the range 156 to 320 MHz.

- If the PLL output is selected in the Main clock source select register (<u>Table 17</u>), verify that F_{clkout} divided by the value in the System clock divider register (<u>Table 19</u>) is less than or equal to the maximum processor clock frequency (<u>Section 1.2</u> or the LPC11Axx data sheet).
- Program the System PLL Control register (<u>Table 8</u>) with MSEL = M-1 and PSEL = P-1.

3.10.6.2 Mode 3 (Power-down mode)

In this mode, the internal current reference is turned off, the oscillator and the phase-frequency detector are stopped and the dividers enter a reset state. While in Power-down mode, the lock output will be low, to indicate that the PLL is not in lock. When the Power-down mode is terminated by making pd low, the PLL resumes normal operation, and will make the lock signal high once it has regained lock on the input clock.

3.11 Flash memory access

Depending on the system clock frequency, access to the flash memory can be configured with various access times by writing to the FLASHCFG register at address 0x4003 C010. This register is part of the flash configuration block (see <u>Section 20.10.1</u>).

Remark: Improper setting of this register may result in incorrect operation of the LPC11Axx flash memory.

UM10527

Chapter 4: LPC11Axx Interrupt controller

Rev. 5 — 21 January 2013

User manual

4.1 Introduction

The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late-arriving interrupts.

4.2 Features

- Integral part of the ARM Cortex-M0
- · Tightly coupled interrupt controller provides low interrupt latency
- Controls system exceptions and peripheral interrupts
- In the LPC11Axx, the NVIC supports 24 vectored interrupts
- Four programmable interrupt priority levels with hardware priority level masking
- Relocatable vector table
- Software interrupt generation

4.3 Interrupt sources

<u>Table 38</u> lists the interrupt sources in the LPC11Axx. Each peripheral device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent more than one interrupt source.

Table 38. Connection of interrupt sources to the Vectored Interrupt Controller

Exception number	IRQ number	Vector address	Source	Flag(s)
16-23	0-7	0x40-0x5C	GPIO	Pin interrupts 0-7
24-25	8-9	0x60-64	GPIO	Port interrupts 0-1
26	10	0x68	Analog Comparator	Edge detect Comparator Level
27	11	0x6C	DAC	Event triggered
29-28	13-12	-	-	Reserved
30	14	0x78	SSP1	Tx FIFO half empty Rx FIFO half full Rx Timeout Rx Overrun
31	15	0x7C	I ² C	SI (state change)
32	16	0x80	CT16B0	Match 0-3 Capture 0-3
33	17	0x84	CT16B1	Match 0-3 Capture 0-3
34	18	0x88	CT32B0	Match 0-3 Capture 0-3

Chapter 4: LPC11Axx Interrupt controller

Table 38. Connection of interrupt sources to the Vectored Interrupt Controller

			<u>- </u>	
Exception number	IRQ number	Vector address	Source	Flag(s)
35	19	0x8C	CT32B1	Match 0-3 Capture 0-3
36	20	0x90	SSP0	Tx FIFO half empty Rx FIFO half full Rx Timeout Rx Overrun
37	21	0x94	USART	Rx Line Status (RLS) Transmit Holding Register Empty (THRE) Rx Data Available (RDA) Character Time-out Indicator (CTI)
38-39	22-23	0x98-0x9C	-	Reserved
40	24	0xA0	ADC	End of conversion
41	25	0xA4	WDT	Watchdog time-out
42	26	0xA8	BOD	Brown-out detect
43	27	0xAC	Flash interface	
44-47	28-31	0xB0-0xBC	-	Reserved

The IRQ numbers in <u>Table 38</u> correspond to bit numbers in the following registers that are described in the Cortex-M0 Appendix:

- Section 25.5.2.2 "Interrupt Set-enable Register"
- Section 25.5.2.3 "Interrupt Clear-enable Register"
- Section 25.5.2.4 "Interrupt Set-pending Register"
- Section 25.5.2.5 "Interrupt Clear-pending Register"

The IRQ numbers also map to the fields in Section 25.5.2.6 "Interrupt Priority Registers".

UM10527

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Rev. 5 — 21 January 2013

User manual

5.1 How to read this chapter

All GPIO registers refer to 32 pins on each port. Depending on the package type, not all pins are available, and the corresponding bits in the GPIO registers are reserved (see Table 39).

Table 39. GPIO pins available

Package	GPIO Port 0	GPIO Port 1
WLCSP20	PIO0_0 to PIO0_17	-
HVQFN33	PIO0_0 to PIO0_27	-
LQFPN48	PIO0_0 to PIO0_31	PIO1_0 to PIO1_9

5.2 Basic configuration

Various register blocks must be enabled to use the GPIO port and pin interrupt features:

- For the pin interrupts, select up to 8 external interrupt pins from all GPIO port pins in the SYSCON block (<u>Table 32</u>) and enable the clock to the pin interrupt register block in the SYSAHBCLKCTRL register (<u>Table 20</u>, bit 19).
- For the group interrupt feature, enable the clock to the GROUP0 and GROUP1 register interfaces in the SYSAHBCLKCTRL register ((Table 20, bit 19).
- For the GPIO port registers, enable the clock to the GPIO port register in the SYSAHBCLKCTRL register (<u>Table 20</u>, bit 6).

5.3 Features

5.3.1 GPIO pin interrupt features

- Up to 8 pins can be selected from all GPIO pins as edge- or level-sensitive interrupt requests. Each request creates a separate interrupt in the NVIC.
- Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.
- Level-sensitive interrupt pins can be HIGH- or LOW-active.

5.3.2 **GPIO** group interrupt features

- The inputs from any number of GPIO pins can be enabled to contribute to a combined group interrupt.
- The polarity of each input enabled for the group interrupt can be configured HIGH or LOW
- Enabled interrupts can be logically combined through an OR or AND operation.
- Two group interrupts are supported to reflect two distinct interrupt patterns.
- The GPIO group interrupts can wake up the part from sleep mode.

UM10527

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

5.3.3 GPIO port features

- GPIO pins can be configured as input or output by software.
- All GPIO pins default to inputs with interrupt disabled at reset.
- Pin registers allow pins to be sensed and set individually.

5.4 Introduction

The GPIO pins can be used in several ways to set pins as inputs or outputs and use the inputs as combinations of level and edge sensitive interrupts.

5.4.1 GPIO pin interrupts

From all available GPIO pins, up to eight pins can be selected in the system control block to serve as external interrupt pins (see <u>Table 32</u>). The external interrupt pins are connected to eight individual interrupts in the NVIC and are created based on rising or falling edges or on the input level on the pin.

5.4.2 **GPIO** group interrupt

For each port/pin connected to one of the two the GPIO Grouped Interrupt blocks (GROUP0 and GROUP1), the GPIO grouped interrupt registers determine which pins are enabled to generate interrupts and what the active polarities of each of those inputs are.

The GPIO grouped interrupt registers also select whether the interrupt output will be level or edge triggered and whether it will be based on the OR or the AND of all of the enabled inputs.

When the designated pattern is detected on the selected input pins, the GPIO grouped interrupt block will generate an interrupt. If the part is in a power-savings mode it will first asynchronously wake the part up prior to asserting the interrupt request. The interrupt request line can be cleared by writing a one to the interrupt status bit in the control register.

5.4.3 GPIO port

The GPIO port registers can be used to configure each GPIO pin as input or output and read the state of each pin if the pin is configured as input or set the state of each pin if the pin is configured as output.

5.5 Register description

The GPIO consists of the following blocks:

- The GPIO pin interrupts block at address 0x4004 C000. Registers in this block enable
 the up to 8 pin interrupts selected in the syscon block PINTSEL registers (see
 <u>Table 32</u>) and configure the level and edge sensitivity for each selected pin interrupt.
 The GPIO interrupt registers are listed in <u>Table 40</u> and <u>Section 5.5.1</u>
- The GPIO GROUP0 interrupt block at address 0x4005 C000. Registers in this block allow to configure any pin on port 0 and 1 to contribute to a combined interrupt. The GPIO GROUP0 registers are listed in <u>Table 41</u> and <u>Section 5.5.2</u>.

UM10527

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

- The GPIO GROUP1 interrupt block at address 0x4005 8000. Registers in this block allow to configure any pin on port 0 and 1 to contribute to a combined interrupt. The GPIO GROUP1 registers are listed in Table 42 and Section 5.5.2.
- The GPIO port block at address 0x5000 0000. Registers in this block allow to read and write to port pins and configure port pins as inputs or outputs. The GPIO port registers are listed in Table 43 and Section 5.5.3.

Note: In all GPIO registers, bits that are not shown are reserved.

Table 40. Register overview: GPIO pin interrupts (base address: 0x4004 C000)

Name	Access	Address offset	Description	Reset value	Reference
ISEL	R/W	0x000	Pin Interrupt Mode register	0	Table 44
IENR	R/W	0x004	Pin interrupt level (rising edge) interrupt enable register	0	Table 45
SIENR	WO	0x008	Pin interrupt level (rising edge) interrupt set register	NA	Table 46
CIENR	WO	0x00C	Pin interrupt level (rising edge interrupt) clear register	NA	Table 47
IENF	R/W	0x010	Pin interrupt active level (falling edge) interrupt enable register	0	Table 48
SIENF	WO	0x014	Pin interrupt active level (falling edge) interrupt set register	NA	Table 49
CIENF	WO	0x018	Pin interrupt active level (falling edge) interrupt clear register	NA	Table 50
RISE	R/W	0x01C	Pin interrupt rising edge register	0	Table 51
FALL	R/W	0x020	Pin interrupt falling edge register	0	Table 52
IST	R/W	0x024	Pin interrupt status register	0	Table 53

Table 41. Register overview: GPIO GROUP0 interrupt (base address 0x4005 C000)

Name	Access	Address offset	Description	Reset value	Reference
CTRL	R/W	0x000	GPIO grouped interrupt control register	0	Table 54
PORT_POL0	R/W	0x020	GPIO grouped interrupt port 0 polarity register	0xFFFF FFFF	Table 55
PORT_POL1	R/W	0x024	GPIO grouped interrupt port 1 polarity register	0xFFFF FFFF	Table 56
PORT_ENA0	R/W	0x040	GPIO grouped interrupt port 0 enable register	0	Table 57
PORT_ENA1	R/W	0x044	GPIO grouped interrupt port 1 enable register	0	Table 58

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 42. Register overview: GPIO GROUP1 interrupt (base address 0x4006 0000)

Name	Access	Address offset	Description	Reset value	Reference
CTRL	R/W	0x000	GPIO grouped interrupt control register	0	Table 54
PORT_POL0	R/W	0x020	GPIO grouped interrupt port 0 polarity register	0xFFFF FFFF	Table 55
PORT_POL1	R/W	0x024	GPIO grouped interrupt port 1 polarity register	0xFFFF FFFF	Table 56
PORT_ENA0	R/W	0x040	GPIO grouped interrupt port 0 enable register	0	Table 57
PORT_ENA1	R/W	0x044	GPIO grouped interrupt port 1 enable register	0	Table 58

GPIO port addresses can be read and written as bytes, halfwords, or words.

Table 43. Register overview: GPIO port (base address 0x5000 0000)

	3					
Name	Access	Address offset	Description	Reset value	Width	Reference
B0 to B31	R/W	0x0000 to 0x001F	Byte pin registers port 0; pins PIO0_0 to PIO0_31	ext[1]	byte (8 bit)	Table 59
B32 to B42	R/W	0x0020 to 0x0029	Byte pin registers port 1	ext[1]	byte (8 bit)	Table 60
W0 to W31	R/W	0x1000 to 0x107C	Word pin registers port 0	ext[1]	word (32 bit)	Table 61
W32 to W42	R/W	0x1080 to 0x10A4	Word pin registers port 1	ext[1]	word (32 bit)	Table 62
DIR0	R/W	0x2000	Direction registers port 0	0	word (32 bit)	Table 63
DIR1	R/W	0x2004	Direction registers port 1	0	word (32 bit)	Table 64
MASK0	R/W	0x2080	Mask register port 0	0	word (32 bit)	Table 65
MASK1	R/W	0x2084	Mask register port 1	0	word (32 bit)	Table 66
PIN0	R/W	0x2100	Port pin register port 0	ext[1]	word (32 bit)	Table 67
PIN1	R/W	0x2104	Port pin register port 1	ext[1]	word (32 bit)	Table 68
MPIN0	R/W	0x2180	Masked port register port 0	ext[1]	word (32 bit)	Table 69
MPIN1	R/W	0x2184	Masked port register port 1	ext[1]	word (32 bit)	Table 70
SET0	R/W	0x2200	Write: Set register for port 0 Read: output bits for port 0	0	word (32 bit)	Table 71
SET1	R/W	0x2204	Write: Set register for port 1 Read: output bits for port 1	0	word (32 bit)	Table 72
CLR0	WO	0x2280	Clear port 0	NA	word (32 bit)	Table 73
CLR1	WO	0x2284	Clear port 1	NA	word (32 bit)	Table 74
NOT0	WO	0x2300	Toggle port 0	NA	word (32 bit)	Table 75
NOT1	WO	0x2304	Toggle port 1	NA	word (32 bit)	Table 76
-						

^{[1] &}quot;ext" in this table and subsequent tables indicates that the data read after reset depends on the state of the pin, which in turn may depend on an external source.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

5.5.1 GPIO pin interrupts register description

5.5.1.1 Pin interrupt mode register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the ISEL register determines whether the interrupt is edge or level sensitive.

Table 44. Pin interrupt mode register (ISEL, address 0x4004 C000) bit description

			-	
Bit	Symbol	Description	Reset value	Access
7:0	PMODE	Selects the interrupt mode for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Edge sensitive 1 = Level sensitive	0	R/W
31:8	-	Reserved.	-	-

5.5.1.2 Pin interrupt level (rising edge) interrupt enable register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the IENR register enables the interrupt depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is enabled.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is enabled. The IENF register configures the active level (HIGH or LOW) for this interrupt.

Table 45. Pin interrupt level (rising edge) interrupt enable register (IENR, address 0x4004 C004) bit description

Bit	Symbol	Description	Reset value	Access
7:0	ENRL	Enables the rising edge or level interrupt for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Disable rising edge or level interrupt. 1 = Enable rising edge or level interrupt.	0	R/W
31:8	-	Reserved.	-	-

5.5.1.3 Pin interrupt level (rising edge) interrupt set register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the SIENR register sets the corresponding bit in the IENR register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is set.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is set.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 46. Pin interrupt level (rising edge) interrupt set register (SIENR, address 0x4004 C008) bit description

Bit	Symbol	Description	Reset value	Access
7:0	SETENRL	Ones written to this address set bits in the IENR, thus enabling interrupts. Bit n sets bit n in the IENR register. 0 = No operation. 1 = Enable rising edge or level interrupt.	NA	WO
31:8	-	Reserved.	-	-

5.5.1.4 Pin interrupt level (rising edge interrupt) clear register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the CIENR register clears the corresponding bit in the IENR register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the rising edge interrupt is cleared.
- If the pin interrupt mode is level sensitive (PMODE = 1), the level interrupt is cleared.

Table 47. Pin interrupt level (rising edge interrupt) clear register (CIENR, address 0x4004 C00C) bit description

Bit	Symbol	Description	Reset	Access
			value	
7:0	CENRL	Ones written to this address clear bits in the IENR, thus disabling the interrupts. Bit n clears bit n in the IENR register. 0 = No operation. 1 = Disable rising edge or level interrupt.	NA	WO
31:8	-	Reserved.	-	-

5.5.1.5 Pin interrupt active level (falling edge) interrupt enable register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the IENF register enables the falling edge interrupt or the configures the level sensitivity depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is enabled.
- If the pin interrupt mode is level sensitive (PMODE = 1), the active level of the level interrupt (HIGH or LOW) is configured.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 48. Pin interrupt active level (falling edge) interrupt enable register (IENF, address 0x4004 C010) bit description

		,		
Bit	Symbol	Description	Reset value	Access
7:0	ENAF	Enables the falling edge or configures the active level interrupt for each pin interrupt. Bit n configures the pin interrupt selected in PINTSELn. 0 = Disable falling edge interrupt or set active interrupt level LOW. 1 = Enable falling edge interrupt enabled or set active interrupt level HIGH.	0	R/W
31:8	-	Reserved.	-	-

5.5.1.6 Pin interrupt active level (falling edge) interrupt set register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the SIENF register sets the corresponding bit in the IENF register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is set.
- If the pin interrupt mode is level sensitive (PMODE = 1), the HIGH-active interrupt is selected.

Table 49. Pin interrupt active level (falling edge interrupt) set register (SIENF, address 0x4004 C014) bit description

Bit	Symbol	Description	Reset value	Access
7:0	SETENAF	Ones written to this address set bits in the IENF, thus enabling interrupts. Bit n sets bit n in the IENF register. 0 = No operation. 1 = Select HIGH-active interrupt or enable falling edge interrupt.	NA	WO
31:8	-	Reserved.	-	-

5.5.1.7 Pin interrupt active level (falling edge interrupt) clear register

For each of the 8 pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>), one bit in the CIENF register sets the corresponding bit in the IENF register depending on the pin interrupt mode configured in the ISEL register:

- If the pin interrupt mode is edge sensitive (PMODE = 0), the falling edge interrupt is cleared.
- If the pin interrupt mode is level sensitive (PMODE = 1), the LOW-active interrupt is selected.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 50. Pin interrupt active level (falling edge) interrupt clear register (CIENF, address 0x4004 C018) bit description

Bit	Symbol	Description	Reset value	Access
7:0	CENAF	Ones written to this address clears bits in the IENF, thus disabling interrupts. Bit n clears bit n in the IENF register. 0 = No operation. 1 = LOW-active interrupt selected or falling edge interrupt disabled.	NA	WO
31:8	-	Reserved.	-	-

5.5.1.8 Pin interrupt rising edge register

This register contains ones for pin interrupts selected in the PINTSELn registers (see <u>Table 32</u>) on which a rising edge has been detected. Writing ones to this register clears rising edge detection. Ones in this register assert an interrupt request for pins that are enabled for rising-edge interrupts. All edges are detected for all pins selected by the PINTSELn registers, regardless of whether they are interrupt-enabled.

Table 51. Pin interrupt rising edge register (RISE, address 0x4004 C01C) bit description

Bit	Symbol	Description	Reset value	Access
7:0	RDET	Rising edge detect. Bit n detects the rising edge of the pin selected in PINTSELn. Read 0: No rising edge has been detected on this pin since Reset or the last time a one was written to this bit. Write 0: no operation. Read 1: a rising edge has been detected since Reset or the last time a one was written to this bit. Write 1: clear rising edge detection for this pin.	0	R/W
31:8	-	Reserved.	-	-

5.5.1.9 Pin interrupt falling edge register

This register contains ones for pin interrupts selected in the PINTSELn registers (see Table 32) on which a falling edge has been detected. Writing ones to this register clears falling edge detection. Ones in this register assert an interrupt request for pins that are enabled for falling-edge interrupts. All edges are detected for all pins selected by the PINTSELn registers, regardless of whether they are interrupt-enabled.

Table 52. Pin interrupt falling edge register (FALL, address 0x4004 C020) bit description

Bit	Symbol	Description	Reset value	Access
7:0	FDET	Falling edge detect. Bit n detects the falling edge of the pin selected in PINTSELn. Read 0: No falling edge has been detected on this pin since Reset or the last time a one was written to this bit. Write 0: no operation. Read 1: a falling edge has been detected since Reset or the last time a one was written to this bit. Write 1: clear falling edge detection for this pin.	0	R/W
31:8	-	Reserved.	-	-

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

5.5.1.10 Pin interrupt status register

Reading this register returns ones for pin interrupts that are currently requesting an interrupt. For pins identified as edge-sensitive in the Interrupt Select register, writing ones to this register clears both rising- and falling-edge detection for the pin. For level-sensitive pins, writing ones inverts the corresponding bit in the Active level register, thus switching the active level on the pin.

Table 53. Pin interrupt status register (IST address 0x4004 C024) bit description

		7		
Bit	Symbol	Description	Reset value	Access
7:0	PSTAT	Pin interrupt status. Bit n returns the status, clears the edge interrupt, or inverts the active level of the pin selected in PINTSELn. Read 0: interrupt is not being requested for this interrupt pin. Write 0: no operation. Read 1: interrupt is being requested for this interrupt pin. Write 1 (edge-sensitive): clear rising- and falling-edge detection for this pin. Write 1 (level-sensitive): switch the active level for this pin (in the IENF register).	0	R/W
31:8	-	Reserved.	-	-

5.5.2 GPIO GROUP0/GROUP1 interrupt register description

5.5.2.1 Grouped interrupt control register

Table 54. GPIO grouped interrupt control register (CTRL, addresses 0x4005 C000 (GROUP0 INT) and 0x4006 0000 (GROUP1 INT)) bit description

Bit	Symbol	Value	Description	Reset value
0	INT		Group interrupt status. This bit is cleared by writing a one to it. Writing zero has no effect.	0
		0	No interrupt request is pending.	
		1	Interrupt request is active.	
1	COMB		Combine enabled inputs for group interrupt	0
		0	OR functionality: A grouped interrupt is generated when any one of the enabled inputs is active (based on its programmed polarity).	
		1	AND functionality: An interrupt is generated when all enabled bits are active (based on their programmed polarity).	
2	TRIG		Group interrupt trigger	0
		0	Edge-triggered	
		1	Level-triggered	
31:3	-	-	Reserved	0

5.5.2.2 GPIO grouped interrupt port polarity registers

The grouped interrupt port polarity registers determine how the polarity of each enabled pin contributes to the grouped interrupt. Each port is associated with its own port polarity register, and the values of both registers together determine the grouped interrupt.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 55. GPIO grouped interrupt port 0 polarity registers (PORT_POL0, addresses 0x4005 C020 (GROUP0 INT) and 0x4006 0020 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	POL0	Configure pin polarity of port 0 pins for group interrupt. Bit n corresponds to pin PIOO_n of port 0. 0 = the pin is active LOW. If the level on this pin is LOW, the pin contributes to the group interrupt. 1 = the pin is active HIGH. If the level on this pin is HIGH, the pin contributes to the group interrupt.	1	-

Table 56. GPIO grouped interrupt port 1 polarity registers (PORT_POL1, addresses 0x4005 C024 (GROUP0 INT) and 0x4006 0024 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	POL1	Configure pin polarity of port 1 pins for group interrupt. Bit n corresponds to pin PIO1_n of port 1. 0 = the pin is active LOW. If the level on this pin is LOW, the pin contributes to the group interrupt. 1 = the pin is active HIGH. If the level on this pin is HIGH, the pin contributes to the group interrupt.	1	-

5.5.2.3 GPIO grouped interrupt port enable registers

The grouped interrupt port enable registers enable the pins which contribute to the grouped interrupt. Each port is associated with its own port enable register, and the values of both registers together determine which pins contribute to the grouped interrupt.

Table 57. GPIO grouped interrupt port 0 enable registers (PORT_ENA0, addresses 0x4005 C040 (GROUP0 INT) and 0x4006 0040 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	ENA0	Enable port 0 pin for group interrupt. Bit n corresponds to pin PIO0_n of port 0. 0 = the port 0 pin is disabled and does not contribute to the grouped interrupt. 1 = the port 0 pin is enabled and contributes to the grouped interrupt.	0	-

Table 58. GPIO grouped interrupt port 1 enable registers (PORT_ENA1, addresses 0x4005 C044 (GROUP0 INT) and 0x4006 0044 (GROUP1 INT)) bit description

Bit	Symbol	Description	Reset value	Access
31:0	ENA1	Enable port 1 pin for group interrupt. Bit n corresponds to pin PIO1_n of port 0. 0 = the port 1 pin is disabled and does not contribute to the grouped interrupt. 1 = the port 1 pin is enabled and contributes to the grouped interrupt.	0	-

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

5.5.3 GPIO port register description

5.5.3.1 GPIO port byte pin registers

Each GPIO pin has a byte register in this address range. Software typically reads and writes bytes to access individual pins, but can read or write halfwords to sense or set the state of two pins, and read or write words to sense or set the state of four pins.

Table 59. GPIO port 0 byte pin registers (B0 to B31, addresses 0x5000 0000 to 0x5000 001F) bit description

Bit	Symbol	Description	Reset value	Access
0	PBYTE	Read: state of the pin PIO0_n, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as 0. Write: loads the pin's output bit.	ext	R/W
7:1		Reserved (0 on read, ignored on write)	0	-

Table 60. GPIO port 1 byte pin registers (B32 to B42, addresses 0x5000 0020 to 0x5000 0029) bit description

Bit	Symbol	Description	Reset value	Access
0	PBYTE	Read: state of the pin PIO1_n, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as 0. Write: loads the pin's output bit.	ext	R/W
7:1		Reserved (0 on read, ignored on write)	0	-

5.5.3.2 GPIO port word pin registers

Each GPIO pin has a word register in this address range. Any byte, halfword, or word read in this range will be all zeros if the pin is low or all ones if the pin is high, regardless of direction, masking, or alternate function, except that pins configured as analog I/O always read as zeros. Any write will clear the pin's output bit if the value written is all zeros, else it will set the pin's output bit.

Table 61. GPIO port 0 word pin registers (W0 to W31, addresses 0x5000 1000 to 0x5000 107C) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PWORD	Read 0: pin is LOW. Write 0: clear output bit. Read 0xFFFF FFFF: pin is HIGH. Write any value 0x0000 0001 to 0xFFFF FFFF: set output bit.	ext	R/W
		Remark: Only 0 or 0xFFFF FFFF can be read. Writing any value other than 0 will set the output bit.		

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 62. GPIO port 1 word pin registers (W32 to W63, addresses 0x5000 1080 to 0x5000 10FC) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PWORD	Read 0: pin is LOW. Write 0: clear output bit. Read 0xFFFF FFFF: pin is HIGH. Write any value 0x0000 0001 to 0xFFFF FFFF: set output bit.	ext	R/W
		Remark: Only 0 or 0xFFFF FFFF can be read. Writing any value other than 0 will set the output bit.		

5.5.3.3 GPIO port direction registers

Each GPIO port has one direction register for configuring the port pins as inputs or outputs.

Table 63. GPIO direction port 0 register (DIR0, address 0x5000 2000) bit description

Bit	Symbol	Description	Reset value	Access
31:0	DIRP0	Selects pin direction for pin PIO0_n (bit 0 = PIO0_0, bit 1 = PIO0_1,, bit 31 = PIO0_31). 0 = input. 1 = output.	0	R/W

Table 64. GPIO direction port 1 register (DIR1, address 0x5000 2004) bit description

Bit	Symbol	Description	Reset value	Access
31:0	DIRP1	Selects pin direction for pin PIO1_n (bit 0 = PIO1_0, bit 1 = PIO1_1,, bit 31 = PIO1_31). 0 = input. 1 = output.	0	R/W

5.5.3.4 GPIO port mask registers

These registers affect writing and reading the MPORT registers. Zeroes in these registers enable reading and writing; ones disable writing and result in zeros in corresponding positions when reading.

Table 65. GPIO mask port 0 register (MASK0, address 0x5000 2080) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MASKP0	Controls which bits corresponding to PIO0_n are active in the P0MPORT register (bit 0 = PIO0_0, bit 1 = PIO0_1,, bit 31 = PIO0_31). 0 = Read MPORT: pin state; write MPORT: load output bit. 1 = Read MPORT: 0; write MPORT: output bit not affected.	0	R/W

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 66. GPIO mask port 1 register (MASK1, address 0x5000 2084) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MASKP1	Controls which bits corresponding to PIO1_n are active in the P1MPORT register (bit 0 = PIO1_0, bit 1 = PIO1_1,, bit 31 = PIO1_31). 0 = Read MPORT: pin state; write MPORT: load output bit. 1 = Read MPORT: 0; write MPORT: output bit not affected.	0	R/W

5.5.3.5 GPIO port pin registers

Reading these registers returns the current state of the pins read, regardless of direction, masking, or alternate functions, except that pins configured as analog I/O always read as 0s. Writing these registers loads the output bits of the pins written to, regardless of the Mask register.

Table 67. GPIO port 0 pin register (PIN0, address 0x5000 2100) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PORT0	Reads pin states or loads output bits (bit 0 = PIO0_0, bit 1 = PIO0_1,, bit 31 = PIO0_31). 0 = Read: pin is low; write: clear output bit. 1 = Read: pin is high; write: set output bit.	ext	R/W

Table 68. GPIO port 1 pin register (PIN1, address 0x5000 2104) bit description

Bit	Symbol	Description	Reset value	Access
31:0	PORT1	Reads pin states or loads output bits (bit 0 = PIO1_0, bit 1 = PIO1_1,, bit 31 = PIO1_31). 0 = Read: pin is low; write: clear output bit. 1 = Read: pin is high; write: set output bit.	ext	R/W

5.5.3.6 GPIO masked port pin registers

These registers are similar to the PORT registers, except that the value read is masked by ANDing with the inverted contents of the corresponding MASK register, and writing to one of these registers only affects output register bits that are enabled by zeros in the corresponding MASK register

Table 69. GPIO masked port 0 pin register (MPIN0, address 0x5000 2180) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MPORTP0	Masked port register (bit 0 = PIO0_0, bit 1 = PIO0_1,, bit 31 = PIO0_31). 0 = Read: pin is LOW and/or the corresponding bit in the MASK register is 1; write: clear output bit if the corresponding bit in the MASK register is 0. 1 = Read: pin is HIGH and the corresponding bit in the MASK register is 0; write: set output bit if the corresponding bit in the MASK register is 0.	ext	R/W

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 70. GPIO masked port 1 pin register (MPIN1, address 0x5000 2184) bit description

Bit	Symbol	Description	Reset value	Access
31:0	MPORTP1	Masked port register (bit 0 = PIO1_0, bit 1 = PIO1_1,, bit 31 = PIO1_31). 0 = Read: pin is LOW and/or the corresponding bit in the MASK register is 1; write: clear output bit if the corresponding bit in the MASK register is 0. 1 = Read: pin is HIGH and the corresponding bit in the MASK register is 0; write: set output bit if the corresponding bit in the MASK register is 0.	ext	R/W

5.5.3.7 GPIO port set registers

Output bits can be set by writing ones to these registers, regardless of MASK registers. Reading from these register returns the port's output bits, regardless of pin directions.

Table 71. GPIO set port 0 register (SET0, address 0x5000 2200) bit description

Bit	Symbol	Description	Reset value	Access
31:0	SETP0	Read or set output bits. 0 = Read: output bit: write: no operation. 1 = Read: output bit; write: set output bit.	0	R/W

Table 72. GPIO set port 1 register (SET1, address 0x5000 2204) bit description

Bit	Symbol	Description	Reset value	Access
31:0	SETP1	Read or set output bits. 0 = Read: output bit: write: no operation. 1 = Read: output bit; write: set output bit.	0	R/W

5.5.3.8 GPIO port clear registers

Output bits can be cleared by writing ones to these write-only registers, regardless of MASK registers.

Table 73. GPIO clear port 0 register (CLR0, address 0x5000 2280) bit description

Bit	Symbol	Description	Reset value	Access
31:0	CLRP0	Clear output bits: 0 = No operation. 1 = Clear output bit.	NA	WO

Table 74. GPIO clear port 1 register (CLR1, address 0x5000 2284) bit description

Bit	Symbol	Description	Reset value	Access
31:0	CLRP1	Clear output bits: 0 = No operation. 1 = Clear output bit.	NA	WO

5.5.3.9 GPIO port toggle registers

Output bits can be toggled/inverted/complemented by writing ones to these write-only registers, regardless of MASK registers.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

Table 75. GPIO toggle port 0 register (NOT0, address 0x5000 2300) bit description

Bit	Symbol	Description	Reset value	Access
31:0	NOTP0	Toggle output bits: 0 = no operation. 1 = Toggle output bit.	NA	WO

Table 76. GPIO toggle port 1 register (NOT1, address 0x5000 2304) bit description

Bit	Symbol	Description	Reset value	Access
31:0	NOTP1	Toggle output bits: 0 = no operation. 1 = Toggle output bit.	NA	WO

5.6 Functional description

5.6.1 Reading pin state

Software can read the state of all GPIO pins except those selected for analog input or output in the "I/O Configuration" logic. A pin does not have to be selected for GPIO in "I/O Configuration" in order to read its state. There are four ways to read pin state:

- The state of a single pin can be read with 7 high-order zeros from a Byte Pin register.
- The state of a single pin can be read in all bits of a byte, halfword, or word from a Word Pin register.
- The state of multiple pins in a port can be read as a byte, halfword, or word from a PORT register.
- The state of a selected subset of the pins in a port can be read from a Masked Port (MPORT) register. Pins having a 1 in the port's Mask register will read as 0 from its MPORT register.

5.6.2 GPIO output

Each GPIO pin has an output bit in the GPIO block. These output bits are the targets of write operations "to the pins". Two conditions must be met in order for a pin's output bit to be driven onto the pin:

- 1. The pin must be selected for GPIO operation in the "I/O Configuration" block, and
- 2. the pin must be selected for output by a 1 in its port's DIR register.

If either or both of these conditions is (are) not met, "writing to the pin" has no effect.

There are seven ways to change GPIO output bits:

- Writing to a Byte Pin register loads the output bit from the least significant bit.
- Writing to a Word Pin register loads the output bit with the OR of all of the bits written. (This feature follows the definition of "truth" of a multi-bit value in programming languages.)
- Writing to a port's PORT register loads the output bits of all the pins written to.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

- Writing to a port's MPORT register loads the output bits of pins identified by zeros in corresponding positions of the port's MASK register.
- Writing ones to a port's SET register sets output bits.
- Writing ones to a port's CLR register clears output bits.
- Writing ones to a port's NOT register toggles/complements/inverts output bits.

The state of a port's output bits can be read from its SET register. Reading any of the registers described in <u>5.6.1</u> returns the state of pins, regardless of their direction or alternate functions.

5.6.3 Masked I/O

A port's MASK register defines which of its pins should be accessible in its MPORT register. Zeroes in MASK enable the corresponding pins to be read from and written to MPORT. Ones in MASK force a pin to read as 0 and its output bit to be unaffected by writes to MPORT. When a port's MASK register contains all zeros, its PORT and MPORT registers operate identically for reading and writing.

Users of previous NXP devices with similar GPIO blocks should be aware of an incompatibility: on the LPC11A1x, writing to the SET, CLR, and NOT registers is not affected by the MASK register. On previous devices these registers were masked.

Applications in which interrupts can result in Masked GPIO operation, or in task switching among tasks that do Masked GPIO operation, must treat code that uses the Mask register as a protected/restricted region. This can be done by interrupt disabling or by using a semaphore.

The simpler way to protect a block of code that uses a MASK register is to disable interrupts before setting the MASK register, and re-enable them after the last operation that uses the MPORT or MASK register.

More efficiently, software can dedicate a semaphore to the MASK registers, and set/capture the semaphore controlling exclusive use of the MASK registers before setting the MASK registers, and release the semaphore after the last operation that uses the MPORT or MASK registers.

5.6.4 **GPIO** Interrupts

Two separate GPIO interrupt facilities are provided. With pin interrupts, up to eight GPIO pins can each have separately-vectored, edge- or level-sensitive interrupts.

With group interrupts, any subset of the pins in each port can be selected to contribute to a common interrupt.

5.6.4.1 Pin interrupts

In this interrupt facility, up to 8 pins are identified as interrupt sources by the Pin Interrupt Select registers (PINTSEL0-7). All registers in the pin interrupt block contain 8 bits, corresponding to the pins called out by the PINTSEL0-7 registers. The ISEL register defines whether each interrupt pin is edge- or level-sensitive. The RISE and FALL registers detect edges on each interrupt pin, and can be written to clear (and set) edge detection. The IST register indicates whether each interrupt pin is currently requesting an interrupt, and this register can also be written to clear interrupts.

Chapter 5: LPC11Axx General Purpose I/O (GPIO)

The other pin interrupt registers play different roles for edge-sensitive and level-sensitive pins, as described in <u>Table 77</u>.

Table 77. Pin interrupt registers for edge- and level-sensitive pins

Name	Edge-sensitive function	Level-sensitive function
IENR	Enables rising-edge interrupts.	Enables level interrupts.
SIENR	Write to enable rising-edge interrupts.	Write to enable level interrupts.
CIENR	Write to disable rising-edge interrupts.	Write to disable level interrupts.
IENF	Enables falling-edge interrupts.	Selects active level.
SIENF	Write to enable falling-edge interrupts.	Write to select high-active.
CIENF	Write to disable falling-edge interrupts.	Write to select low-active.

5.6.4.2 Group interrupts

In this interrupt facility, an interrupt can be requested for each port, based on any selected subset of pins within each port. The pins that contribute to each port interrupt are selected by 1s in the port's Enable register, and an interrupt polarity can be selected for each pin in the port's Polarity register. The level on each pin is exclusive-ORed with its polarity bit and the result is ANDed with its enable bit, and these results are then inclusive-ORed among all the pins in the port, to create the port's raw interrupt request.

The raw interrupt request from each of the two group interrupts is sent to the NVIC, which can be programmed to treat it as level- or edge-sensitive (see Table 38).

5.6.5 Recommended practices

The following lists some recommended uses for using the GPIO port registers:

- For initial setup after Reset or re-initialization, write the PORT register(s).
- To change the state of one pin, write a Byte Pin or Word Pin register.
- To change the state of multiple pins at a time, write the SET and/or CLR registers.
- To change the state of multiple pins in a tightly controlled environment like a software state machine, consider using the NOT register. This can require less write operations than SET and CLR.
- To read the state of one pin, read a Byte Pin or Word Pin register.
- To make a decision based on multiple pins, read and mask a PORT register.

UM10527

Chapter 6: LPC11Axx I/O configuration

Rev. 5 — 21 January 2013

User manual

6.1 How to read this chapter

The VDDCMP is function controlled by different IOCON registers for different packages.

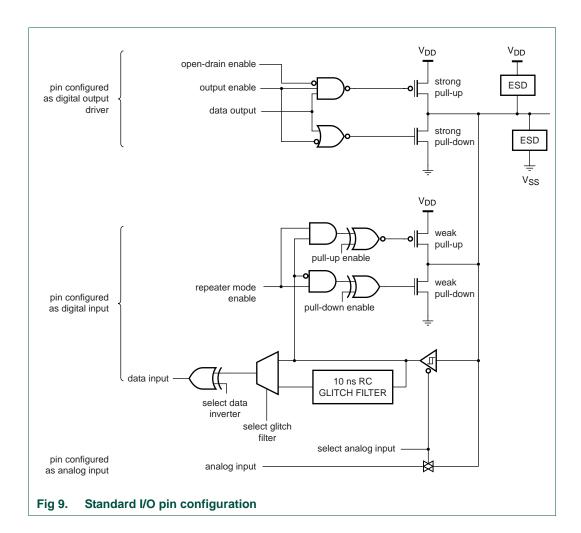
Table 78. Package-specific IOCON registers

Package	Register TCK_PIO5 Bits FUNC = 0x2	Register PIO0_14 Bits FUNC = 0x5
WLCSP	VDDCMP	Reserved
LQFP	Reserved	VDDCMP
HVQFN	Reserved	VDDCMP

For WLCSP packages only: The boot loader changes the default pin configuration from the reset values to the following pin functions:

- PIO0_2 register: default pin function configured as SWCLK.
- PIO0_3 register: default pin function configured as SWDIO.
- TCK_PIO0_5 register: default pin function configured as PIO0_5.
- SWDIO_PIO0_10 register: default pin function configured as PIO0_10.

6.2 Introduction


The I/O configuration registers control the electrical characteristics of the pads. The following features are programmable:

- pin function
- internal pull-up/pull-down resistor or bus keeper
- hysteresis
- analog/digital mode for pads with analog functions
- open-drain output option

6.3 General description

The IOCON registers control the GPIO or peripheral function, the input mode, and the hysteresis of all pins that have a GPIO function. In addition, pins that have an I²C function can be configured for different I²C-bus modes. If a pin supports an analog function, the analog mode can be selected.

Chapter 6: LPC11Axx I/O configuration

6.3.1 Pin function

The FUNC bits in the IOCON registers can be set to GPIO (typically 000) or to a special function. For pins set to GPIO, the DIR registers determine whether the pin is configured as an input or output (see <u>Table 63</u>). For any special function, the pin direction is controlled automatically depending on the function. The DIR registers have no effect for special functions.

6.3.2 Pin mode

The MODE bits in the IOCON register allow the selection of on-chip pull-up or pull-down resistors for each pin or select the repeater mode.

The possible on-chip resistor configurations are pull-up enabled, pull-down enabled, or no pull-up/pull-down. The default value is pull-up enabled.

The repeater mode enables the pull-up resistor if the pin is high and enables the pull-down resistor if the pin is low. This causes the pin to retain its last known state if it is configured as an input and is not driven externally. Repeater mode may typically be used to prevent a pin from floating (and potentially using significant power if it floats to an indeterminate state) if it is temporarily not driven.

Chapter 6: LPC11Axx I/O configuration

6.3.3 Hysteresis

The input buffer for digital functions can be configured with or without hysteresis.

6.3.4 Input inversion

This option is included to save users from having to include an external inverter on an input that is only available in the opposite polarity from an external source. Do not set this option on a GPIO output. Doing so can result in inadvertent toggling of an output with input inversion selected, as a result of operations on other pins in the same port. For example, if software reads a GPIO Port register, modifies other bits/outputs in the value, and writes the result back to the Port register, any output in the port that has input inversion selected will change state.

6.3.5 Analog/digital mode

In Analog mode, the digital receiver is disconnected to eliminate its effect on analog functionality. If Analog mode is selected, the MODE field should be "Inactive" (00); the HYS, INV, FILTR, SLEW, and OD settings have no effect.

For an unconnected pin that has an analog function, keep the ADMODE bit set to "digital" and the MODE field nonzero.

6.3.6 I²C mode

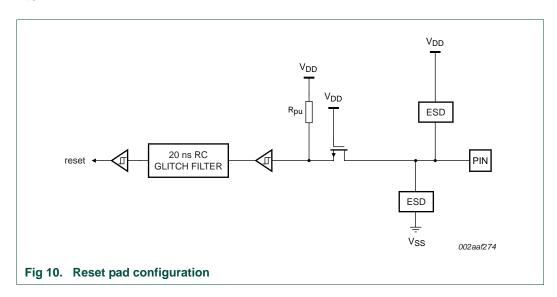
The HS and HIDRIVE bits in registers PIO0_2 and PIO0_3 (<u>Table 82</u>) are provided because these pins are the primary I²C connections on the device, but these options can be used for other applications as well.

- For Standard mode or Fast-mode I²C operation, clear the HS bit so that the input glitch filter is enabled.
- For Fast-mode Plus I²C operation, clear HS to enable the input glitch filter and set the HIDRIVE bit to select 20 mA sink current.
- In non-I²C operation, these pins remain open-drain and can only drive to V_{SS}, regardless of how HS and HIDRIVE are set. Leave HS 1 and HIDRIVE 0 to maximize compatibility with other pins. Clearing HS enables a glitch filter that suppresses pulses up to 50 nS in width.

6.3.7 Output slew rate

The SLEW bits of digital outputs that do not need to switch state very quickly should be set to "slow". This setting allows more outputs to switch simultaneously without noticeably degrading the power/ground distribution of the device, and has only a small effect on signal transition time. This is particularly important if analog accuracy is significant to the application.

6.3.8 Open-Drain Mode


When output is selected, either by selecting a special function in the FUNC field, or by selecting GPIO function for a pin having a 1 in its PnDIR register, a 1 in the OD bit selects open-drain operation, that is, a 1 disables the high-drive transistor. This option has no effect on the primary I^2C pins.

UM10527

Chapter 6: LPC11Axx I/O configuration

6.3.9 RESET (pin RESET/PIO0_0)

See Figure 10 for the reset pad configuration. The reset pin includes a fixed 20 ns glitch filter.

6.4 Register description

The I/O configuration registers control the GPIO port pins and the inputs and outputs of all peripherals and functional blocks.

Each GPIO pin has one IOCON register which controls the pin's function and electrical characteristics.

The IOCON registers are listed in order of their port numbers and their addresses in tables 79, 81, 83, and 85.

Remark: On the WLCSP packages, the boot loader changes the pin configuration from its reset value for following registers: PIO0_2, PIO0_3, TCK_PIO0_5, SWDIO_PIO0_10 (see Section 6.1).

Remark: The reset value in Table 79 refers to the register value after the boot loader has executed.

Register overview: I/O configuration (base address 0x4004 4000)

Name	Access	Address offset	Description	Туре	Reset value	Reference
RESET_PIO0_0	R/W	0x000	I/O configuration for pin RESET/PIO0_0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_1	R/W	0x004	I/O configuration for pin PIO0_1/RXD/CLKOUT/ CT32B0_MAT2/SSEL0/CLKIN	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_2	R/W	0x008	I/O configuration for pin PIO0_2/SCL/ACMP_O/TCK/SWCLK/ CT16B0_CAP0.	I	0x180	Tables <u>82</u> , <u>83</u>
PIO0_3	R/W	0x00C	I/O configuration for pin PIO0_3/SDA/ACMP_O/SWDIO/ CT16B1_CAP0.	I	0x180	Tables <u>82</u> , <u>83</u>

UM10527

Chapter 6: LPC11Axx I/O configuration

Table 79. Register overview: I/O configuration (base address 0x4004 4000)

Name	Access	Address offset	Description	Туре	Reset value	Reference
PIO0_4	R/W	0x010	I/O configuration for pin PIO0_4/AOUT/CT16B0_MAT1/MOSI0	Α	0x190	Tables <u>84</u> , <u>85</u>
TCK_PIO0_5	R/W	0x014	I/O configuration for pin TCK/SWCLK/PIO0_5/ VDDCMP/CT16B0_MAT2/SCK0 (see Section 6.1)	Α	0x190	Tables <u>84</u> , <u>85</u>
TDI_PIO0_6	R/W	0x018	I/O configuration for pin TDI/PIO0_6/AD0/CT32B0_MAT3/MISO0	A	0x190	Tables <u>84</u> , <u>85</u>
TMS_PIO0_7	R/W	0x01C	I/O configuration for pin TMS/PIO0_7/AD1/CT32B1_CAP0/ CT16B0_MAT0	Α	0x190	Tables <u>84</u> , <u>85</u>
TDO_PIO0_8	R/W	0x020	I/O configuration for pin TDO/PIO0_8/AD2/CT32B1_MAT0/SCK1	Α	0x190	Tables <u>84</u> , <u>85</u>
TRST_PIO0_9	R/W	0x024	I/O configuration for pin TRST/PIO0_9/AD3/ CT32B1_MAT1/CT16B0_MAT1/CTS	Α	0x190	Tables <u>84</u> , <u>85</u>
SWDIO_PIO0_10	R/W	0x028	I/O configuration for pin SWDIO/PIO0_10/AD4/ CT32B1_MAT2/CT16B0_MAT2/RTS	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_11	R/W	0x02C	I/O configuration for pin PIO0_11/SCLK/AD5/ CT32B1_MAT3/CT32B0_CAP0	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_12	R/W	0x030	I/O configuration for pin PIO0_12/RXD/ACMP_O/ CT32B0_MAT0/SCL/CLKIN	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_13	R/W	0x034	I/O configuration for pin PIO0_13/TXD/ACMP_I2/ CT32B0_MAT1/SDA	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_14	R/W	0x038	I/O configuration for pin PIO0_14/MISO1/AD6/ CT32B0_CAP1/CT16B1_MAT1/VDDCMP (see Section 6.1)	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_15	R/W	0x03C	I/O configuration for pin PIO0_15/TXD/AD7/CT32B0_CAP2/SDA	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_16	R/W	0x040	I/O configuration for pin PIO0_16/ATRG0/ACMP_I3/CT16B0_CAP1/ SCL	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_17	R/W	0x044	I/O configuration for pin PIO0_17/ATRG1/ACMP_I4/ CT16B0_CAP2/CT16B0_MAT0	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_18	R/W	0x048	I/O configuration for pin PIO0_18/SSEL0/ CT16B0_CAP0/CT16B1_CAP1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_19	R/W	0x04C	I/O configuration for pin PIO0_19/CLKIN/CLKOUT/ MOSI0/CT16B1_MAT0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_20	R/W	0x050	I/O configuration for pin PIO0_20/SCK0/ CT32B1_CAP0/CT16B1_MAT2	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_21	R/W	0x054	I/O configuration for pin PIO0_21/CTS/ACMP_O/ CT32B1_CAP1/SCLK	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_22	R/W	0x058	I/O configuration for pin PIO0_22/MISO0/ACMP_I5/ CT32B1_MAT2/CT32B1_CAP2	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_23	R/W	0x05C	I/O configuration for pin PIO0_23/RTS/ACMP_O/ CT32B0_CAP0/SCLK	D	0x90	Tables <u>80</u> , <u>81</u>
UM10527		All in	formation provided in this document is subject to legal disclaimers.		© NXP B.	V. 2013. All rights reserved.
User manual			Rev. 5 — 21 January 2013			60 of 379

Chapter 6: LPC11Axx I/O configuration

Table 79. Register overview: I/O configuration (base address 0x4004 4000)

Name	Access	Address offset	Description	Туре	Reset value	Reference
PIO0_24	R/W	0x060	I/O configuration for pin PIO0_24/SCL/CLKIN/ CT16B1_CAP0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_25	R/W	0x064	I/O configuration for pin PIO0_25/SDA/SSEL1/ CT16B1_MAT0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_26	R/W	0x068	I/O configuration for pin PIO0_26/TXD/MISO1/ CT16B1_CAP1/CT32B0_CAP2	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_27	R/W	0x06C	I/O configuration for pin PIO0_27/MOSI1/ACMP_I1/ CT32B1_MAT1/CT16B1_CAP2	Α	0x190	Tables <u>84</u> , <u>85</u>
PIO0_28	R/W	0x070	I/O configuration for pin PIO0_28/DTR/SSEL1/ CT32B0_CAP0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_29	R/W	0x074	I/O configuration for pin PIO0_29/DSR/SCK1/ CT32B0_CAP1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_30	R/W	0x078	I/O configuration for pin PIO0_30/RI/MOSI1/ CT32B0_MAT0/CT16B0_CAP0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO0_31	R/W	0x07C	I/O configuration for pin PIO0_31/RI/MOSI1/ CT32B1_MAT0/CT16B1_CAP1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_0	R/W	0x080	I/O configuration for pin PIO1_0/DCD/SCK0/ CT32B1_MAT3/CT16B0_MAT1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_1	R/W	0x084	I/O configuration for pin PIO1_1/DTR/SSEL0/ CT32B1_MAT3/CT16B1_MAT0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_2	R/W	0x088	I/O configuration for pin PIO1_2/DSR/MISO0/ CT16B1_MAT2/CT16B1_MAT1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_3	R/W	0x08C	I/O configuration for pin PIO1_3/RI/MOSI0/ CT16B1_CAP0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_4	R/W	0x090	I/O configuration for pin PIO1_4/RXD/SSEL1/ CT32B0_MAT1/CT32B1_CAP0/CT16B0_CAP1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_5	R/W	0x094	I/O configuration for pin PIO1_5/TXD/SCK1/ CT32B0_MAT2/CT32B1_CAP1/CT16B0_CAP2	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_6	R/W	0x098	I/O configuration for pin PIO1_6/RTS/MOSI1/ CT32B0_MAT3/CT32B1_CAP2/CT16B0_MAT0	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_7	R/W	0x09C	I/O configuration for pin PIO1_7/CTS/MOSI0/ CT32B1_MAT1/CT16B0_MAT2/CT16B1_CAP2	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_8	R/W	0x0A0	I/O configuration for pin PIO1_8/RXD/MISO1/ CT32B1_MAT0/CT16B1_MAT1	D	0x90	Tables <u>80</u> , <u>81</u>
PIO1_9	R/W	0x0A4	I/O configuration for pin PIO1_9/DCD/ CT32B1_MAT2/CT16B1_MAT2	D	0x90	Tables <u>80</u> , <u>81</u>
		-				

6.4.1 I/O configuration registers

LPC11Axx IOCON registers are of 3 types, called D, I, and A. For details on the I/O configuration settings, see <u>Section 6.3</u>.

Chapter 6: LPC11Axx I/O configuration

6.4.1.1 Type D IOCON registers

Table 80. Type D IOCON registers bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. See <u>Table 81</u> for specific values.	000
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	10
		00	Inactive (no pull-down/pull-up resistor enabled).	
		01	Pull-down resistor enabled.	
		10	Pull-up resistor enabled.	
		11	Repeater mode.	
5 HYS	HYS		Hysteresis.	0[1]
		0	Disable.	
		1	Enable.	
6	INV		Input polarity	0
		0	Non-inverted (HIGH on pin = 1)	
		1	Inverted (HIGH on pin = 0)	
8:7	-	-	Reserved.	01
9	SLEW		Driver slew rate	0
		0	Slow (more outputs can be switched simultaneously)	
		1	Fast	
10	OD		Controls open-drain mode	0
		0	Totem-pole output	
		1	Open-drain output (high drive disabled)	
31:11	-	-	Reserved.	0

^[1] Except RESET/PIO0_0, for which HYS resets to 1 (enable hysteresis)

Table 81. Type D IOCON registers: FUNC values and pin functions
Shaded areas in this table indicate Reserved values, which should not be programmed.

				Value of Fl	JNC field			
Register	000	001	010	011	100	101	110	111
RESET_PIO0_0	RESET	PIO0_ 0						
PIO0_1	PIO0_1	RXD	CLKOUT	CT32B0_MAT2	SSEL0	CLKIN		
PIO0_12	PIO0_12	RXD	ACMP_O	CT32B0_MAT0	SCL	CLKIN		
PIO0_18	PIO0_18		SSEL0	CT16B0_CAP0	CT16B1_CAP1			
PIO0_19	PIO0_19	CLKIN	CLKOUT	MOSI0	CT16B1_MAT0			
PIO0_20	PIO0_20		SCK0	CT32B1_CAP0	CT16B1_MAT2			
PIO0_21	PIO0_21	CTS	ACMP_O	CT32B1_CAP1	SCLK			
PIO0_23	PIO0_23	RTS	ACMP_O	CT32B0_CAP0	SCLK			
PIO0_24	PIO0_24	SCL	CLKIN	CT16B1_CAP0				
PIO0_25	PIO0_25	SDA	SSEL1	CT16B1_MAT0				
PIO0_26	PIO0_26	TXD	MISO1	CT16B1_CAP1	CT32B0_CAP2			

UM10527

Chapter 6: LPC11Axx I/O configuration

Table 81. Type D IOCON registers: FUNC values and pin functions

Shaded areas in this table indicate Reserved values, which should not be programmed.

					, 0			
				Value of Fl	JNC field			
Register	000	001	010	011	100	101	110	111
PIO0_28	PIO0_28	DTR	SSEL1	CT32B0_CAP0				
PIO0_29	PIO0_29	DSR	SCK1	CT32B0_CAP1				
PIO0_30	PIO0_30	RI	MOSI1	CT32B0_MAT0	CT16B0_CAP0			
PIO0_31	PIO0_31	RI	MOSI1	CT32B1_MAT0	CT16B1_CAP1			
PIO1_0	PIO1_0	DCD	SCK0	CT32B1_MAT3	CT16B0_MAT1			
PIO1_1	PIO1_1	DTR	SSEL0	CT32B1_MAT3	CT16B1_MAT0			
PIO1_2	PIO1_2	DSR	MISO0	CT16B1_MAT2	CT16B1_MAT1			
PIO1_3	PIO1_3	RI	MOSI0	CT16B1_CAP0				
PIO1_4	PIO1_4	RXD	SSEL1	CT32B0_MAT1	CT32B1_CAP0	CT16B0_CAP1		
PIO1_5	PIO1_5	TXD	SCK1	CT32B0_MAT2	CT32B1_CAP1	CT16B0_CAP2		
PIO1_6	PIO1_6	RTS	MOSI1	CT32B0_MAT3	CT32B1_CAP2	CT16B0_MAT0		
PIO1_7	PIO1_7	CTS	MOSI0	CT32B1_MAT1	CT16B0_MAT2	CT16B1_CAP2		
PIO1_8	PIO1_8	RXD	MISO1	CT32B1_MAT0	CT16B1_MAT1			
PIO1_9	PIO1_9	DCD		CT32B1_MAT2	CT16B1_MAT2			

6.4.1.2 Type I IOCON registers

Table 82. Type I IOCON registers bit description

	71		3								
Bit	Symbol	Value	Description	Reset value							
2:0	FUNC		Selects pin function. See <u>Table 83</u> for specific values. The pins are true open-drain for all pin functions.	0							
7:3		-	Reserved.	10000							
8	8 HS		Disables I ² C features for faster operation.	1							
									0	I ² C glitch filter and slew rate enabled.	
											1
9	HIDRIVE	0	Sink current is standard 4 mA.	0							
		1	Sink current is 20 mA.								
31:10	-	-	Reserved.	-							

Table 83. Type I IOCON registers: FUNC values and pin functions

Shaded areas in this table indicate Reserved values, which should not be programmed.

		Value of FUNC field						
Register	000	001	010	011	100	101	110	111
PIO0_2	PIO0_2	SCL	ACMP_O	TCK/ SWCLK	CT16B0_CAP0			
PIO0_3	PIO0_3	SDA	ACMP_O	SWDIO	CT16B1_CAP0			

Chapter 6: LPC11Axx I/O configuration

6.4.1.3 Type A IOCON registers

Table 84. Type A IOCON registers bit description

Bit	Symbol	Value	Description	Reset value
2:0	FUNC		Selects pin function. See <u>Table 85</u> for specific values.	0
4:3	MODE		Selects function mode (on-chip pull-up/pull-down resistor control).	10
		00	Inactive (no pull-down/pull-up resistor enabled).	
		01	Pull-down resistor enabled.	
		10	Pull-up resistor enabled.	
		11	Repeater mode.	
5	HYS		Hysteresis.	0
		0	Disable.	
		1	Enable.	
6	INV		Input polarity	0
		0	Non-inverted (HIGH on pin = 1)	
	1	Inverted (HIGH on pin = 0)		
7	ADMODE		Select Analog/Digital mode.	1
		0	Analog mode.	
		1	Digital mode.	
8	FILTR		Controls glitch filter	1
		0	Noise pulses are filtered	
		1	No filtering is done	
9	SLEW		Driver slew rate	0
		0	Slow (more outputs can be switched simultaneously)	
		1	Fast	
10	OD		Controls open-drain mode	0
		0	Totem-pole output	
		1	Open-drain output (high drive disabled)	
31:11	-	-	Reserved.	0

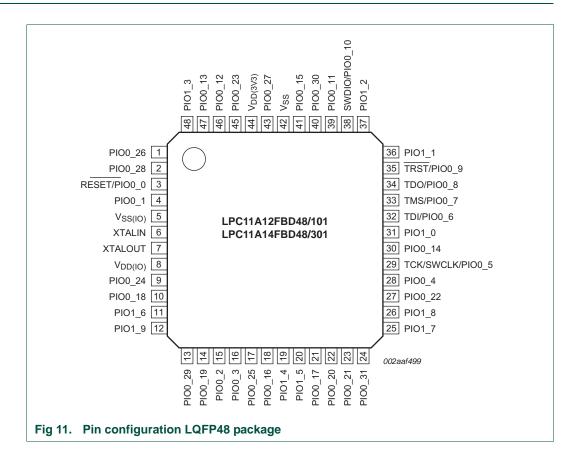
Chapter 6: LPC11Axx I/O configuration

Table 85. Type A IOCON registers: FUNC values and pin functions

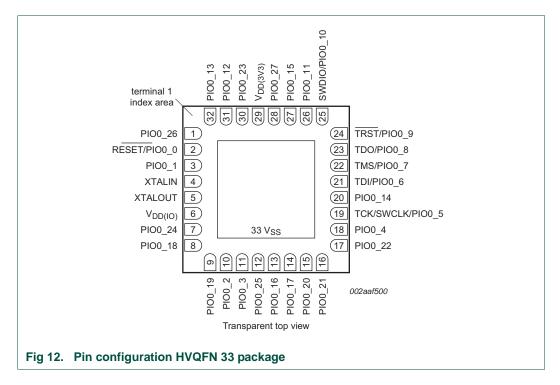
Shaded areas in this table indicate Reserved values, which should not be programmed.

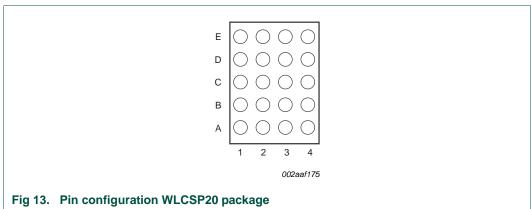
	Value of FUNC field							
Register	000	001	010	011	100	101	110	111
PIO0_4	PIO0_4		AOUT	CT16B0_MAT1	MOSI0			
TCK_PIO0_5	TCK/SWCLK	PIO0_5	VDDCMP	CT16B0_MAT2	SCK0			
TDI_PIO0_6	TDI	PIO0_6	AD0	CT32B0_MAT3	MISO0			
TMS_PIO0_7	TMS	PIO0_7	AD1	CT32B1_CAP0	CT16B0_MAT0			
TDO_PIO0_8	TDO	PIO0_8	AD2	CT32B1_MAT0	SCK1			
TRST_PIO0_9	TRST	PIO0_9	AD3	CT32B1_MAT1	CT16B0_MAT1	CTS		
SWDIO_PIO0_10	SWDIO	PIO0_10	AD4	CT32B1_MAT2	CT16B0_MAT2	RTS		
PIO0_11	PIO0_11	SCLK	AD5	CT32B1_MAT3	CT32B0_CAP0			
PIO0_13	PIO0_13	TXD	ACMP_I2	CT32B0_MAT1	SDA			
PIO0_14	PIO0_14	MISO1	AD6	CT32B0_CAP1	CT16B1_MAT1	VDDCMP [1]		
PIO0_15	PIO0_15	TXD	AD7	CT32B0_CAP2	SDA			
PIO0_16	PIO0_16	ATRG0	ACMP_I3	CT16B0_CAP1	SCL			
PIO0_17	PIO0_17	ATRG1	ACMP_I4	CT16B0_CAP2	CT16B0_MAT0			
PIO0_22	PIO0_22	MISO0	ACMP_I5	CT32B1_MAT2	CT32B1_CAP2			
PIO0_27	PIO0_27	MOSI1	ACMP_I1	CT32B1_MAT1	CT16B1_CAP2			

^[1] See Section 6.1.


UM10527

Chapter 7: LPC11Axx Pin configuration


Rev. 5 — 21 January 2013


User manual

7.1 Pin configuration

Chapter 7: LPC11Axx Pin configuration

7.2 Pin description

All functional pins on the UM10527 are mapped to GPIO port 0 and port 1 (see <u>Table 87</u>). The port pins are multiplexed to accommodate more than one function (see <u>Table 86</u>).

The pin function is controlled by the pin's IOCON register (see the *LPC11A1x user manual*). The standard I/O pad configuration is illustrated in <u>Figure 9</u> and a detailed pin description is given in <u>Table 87</u>.

Table 86. Pin multiplexing

Function	Туре			LQFP48	HVQFN33	WCSP20				
		Port	Glitch filter	Pin	Pin	Ball				
System clocks, reset, and wake-up										
CLKIN		PIO0_1	no	4	3	B2				
		PIO0_12	no	46	31	E1				
		PIO0_19	no	14	9	-				
		PIO0_24	no	9	7	-				
CLKOUT	0	PIO0_1	no	4	3	B2				
		PIO0_19	no	14	9	-				
XTALIN	I (analog)	-	-	6	4	-				
XTALOUT	O (analog)	-	-	7	5	-				
RESET	I	PIO0_0	20 ns[1]	3	2	C1				
Serial Wire Debug	(SWD) and J	TAG	1							
TRST	I	PIO0_9	10 ns[2]	35	24	D4				
TCK	I	PIO0_5	10 ns[2]	29	19	B3				
TDI	I	PIO0_6	10 ns[2]	32	21	C3				
TDO	0	PIO0_8	no	34	23	C2				
TMS	I	PIO0_7	10 ns[2]	33	22	C4				
SWCLK	I	PIO0_2	50 ns[2]	15	10	A1				
		PIO0_5	10 ns[2]	29	19	B3				
SWDIO	I/O	PIO0_3	50 ns[2]	16	11	B1				
		PIO0_10	10 ns[2]	38	25	D3				

Table 86. Pin multiplexing

Function	Туре			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
Analog peripher	als (ADC, DAC	, comparato	or)			
ACMP_I1	I (analog)	PIO0_27	no	43	28	-
ACMP_I2	I (analog)	PIO0_13	no	47	32	D1
ACMP_I3	I (analog)	PIO0_16	no	18	13	A2
ACMP_I4	I (analog)	PIO0_17	no	21	14	A3
ACMP_I5	I (analog)	PIO0_22	no	27	17	-
ACMP_O	O (digital)	PIO0_2	no	15	10	A1
		PIO0_3	no	16	11	B1
		PIO0_12	no	46	31	E1
		PIO0_21	no	23	16	-
		PIO0_23	no	45	30	-
AD0	I (analog)	PIO0_6	no	32	21	C3
AD1	I (analog)	PIO0_7	no	33	22	C4
AD2	I (analog)	PIO0_8	no	34	23	C2
AD3	I (analog)	PIO0_9	no	35	24	D4
AD4	I (analog)	PIO0_10	no	38	25	D3
AD5	I (analog)	PIO0_11	no	39	26	D2
AD6	I (analog)	PIO0_14	no	30	20	B4
AD7	I (analog)	PIO0_15	no	41	27	E4
AOUT	O (analog)	PIO0_4	no	28	18	A4
ATRG0	I	PIO0_16	10 ns[2]	18	13	A2
ATRG1	I	PIO0_17	10 ns[2]	21	14	A3
VDDCMP	I (analog)	PIO0_14	no	30	20	-
		PIO0_5	no	-	-	В3
l ² C-bus interface	9	'	'	'		· · · · · · · · · · · · · · · · · · ·
SCL	I/O	PIO0_2	50 ns[2]	15	10	A1
		PIO0_12	no	46	31	E1
		PIO0_16	10 ns[2]	18	13	A2
		PIO0_24	no	9	7	-
SDA	I/O	PIO0_3	50 ns[2]	16	11	B1
		PIO0_13	10 ns[2]	47	32	D1
		PIO0_15	10 ns[2]	41	27	E4
		PIO0_25	no	17	12	-
SSP0 controller				1		I
MISO0	I/O	PIO0_6	10 ns[2]	32	21	C3
		PIO0_22	10 ns[2]	27	17	-
		PIO1_2	no	37	_	_

Table 86. Pin multiplexing

Function	Type			LQFP48	HVQFN33	WCSP20	
		Port	Glitch filter	Pin	Pin	Ball	
MOSI0	I/O	PIO0_4	10 ns[2]	28	18	A4	
		PIO0_19	no	14	9	-	
		PIO1_3	no	48	-	-	
		PIO1_7	no	25	-	-	
SCK0	I/O	PIO0_5	10 ns[2]	29	19	В3	
		PIO0_20	no	22	15	-	
		PIO1_0	no	31	-	-	
SSEL0	I/O	PIO0_1	no	4	3	B2	
		PIO0_18	no	10	8	-	
		PIO1_1	no	36	-	-	
SSP1 controlle	r			1			
MISO1	I/O	PIO0_14	10 ns[2]	30	20	-	
		PIO0_26	no	1	1	-	
		PIO1_8	no	26	-	-	
MOSI1	I/O	PIO0_27	10 ns[2]	43	28	-	
		PIO0_31	no	24	-	-	
		PIO0_30	no	40	-	-	
		PIO1_6	no	11	-	-	
	I/O	PIO0_8	10 ns[2]	34	23	-	
		PIO1_5	no	20	-	-	
		PIO0_29	no	13	-	-	
SSEL1	I/O	PIO0_25	no	17	12	-	
		PIO1_4	no	19	-	-	
		PIO0_28	no	2	-	-	
USART				I			
RXD	I	PIO0_1	no	4	3	B2	
		PIO0_12	no	46	31	E1	
		PIO1_4	no	19	-	-	
		PIO1_8	no	26	-	-	
TXD	0	PIO0_13	no	47	32	D1	
		PIO0_15	no	41	27	E4	
		PIO0_26	no	1	1	-	
		PIO1_5	no	20	-	-	
SCLK	I/O	PIO0_11	10 ns ^[2]	39	26	D2	
		PIO0_21	no	23	16	-	
		PIO0_23	no	45	30	-	
CTS	I	PIO0_9	10 ns[2]	35	24	D4	
		PIO0_21	no	23	16	-	
		PIO1_7	no	25	_	_	

Table 86. Pin multiplexing

Function	Туре			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
RTS	0	PIO0_10	no	38	25	D3
		PIO0_23	no	45	30	-
		PIO1_6	no	11	-	-
DCD	I	PIO1_9	no	12	-	-
		PIO1_0	no	31	-	-
DSR	I	PIO0_29	no	13	-	-
		PIO1_2	no	37	-	-
DTR	0	PIO0_28	no	2	-	-
		PIO1_1	no	36	-	-
RI	I	PIO0_30	no	40	-	-
		PIO0_31	no	24	-	-
		PIO1_3	no	48	-	-
16-bit counter/tim	ner CT16B0					
CT16B0_CAP0	I	PIO0_2	50 ns[2]	15	10	A1
		PIO0_18	no	10	8	-
		PIO0_30	no	40	-	-
CT16B0_CAP1	I	PIO0_16	10 ns[2]	18	13	A2
		PIO1_4	no	19	-	-
CT16B0_CAP2	I	PIO0_17	10 ns[2]	21	14	A3
		PIO1_5	no	20	-	-
CT16B0_MAT0	0	PIO0_7	no	33	22	C4
		PIO0_17	no	21	14	A3
		PIO1_6	no	11	-	-
CT16B0_MAT1	0	PIO0_4	no	28	18	A4
		PIO0_9	no	35	24	D4
		PIO1_0	no	31	-	-
CT16B0_MAT2	0	PIO0_5	no	29	19	В3
		PIO0_10	no	38	25	D3
		PIO1_7	no	25	-	-
16-bit counter/tim	ner CT16B1			1		
CT16B1_CAP0	l	PIO0_3	50 ns[2]	16	11	B1
		PIO0_24	no	9	7	-
		PIO1_3	no	48	-	-
CT16B1_CAP1	ı	PIO0_18	no	10	8	-
		PIO0_26	no	1	1	-
		PIO0_31	no	24	-	-
CT16B1_CAP2	I	PIO0_27	10 ns[2]	43	28	-
		PIO1_7	no	25	_	-

Table 86. Pin multiplexing

Function	Type			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
CT16B1_MAT0	0	PIO0_19	no	14	9	-
		PIO0_25	no	17	12	-
		PIO1_1	no	36	-	-
CT16B1_MAT1	0	PIO0_14	no	30	20	B4
		PIO1_2	no	37	-	-
		PIO1_8	no	26	-	-
CT16B1_MAT2	0	PIO0_20	no	22	15	-
		PIO1_2	no	37	-	-
		PIO1_9	no	12	-	-
32-bit counter/tim	ner CT32B0			I		I
CT32B0_CAP0	I	PIO0_11	10 ns[2]	39	26	D2
		PIO0_23	no	45	30	-
		PIO0_28	no	2	-	-
CT32B0_CAP1	I	PIO0_14	10 ns[2]	30	20	B4
		PIO0_29	no	13	-	-
CT32B0_CAP2	I	PIO0_15	10 ns[2]	41	27	E4
		PIO0_26	no	1	1	-
CT32B0_MAT0	0	PIO0_12	no	46	31	E1
		PIO0_30	no	40	-	-
CT32B0_MAT1	0	PIO0_13	no	47	32	D1
		PIO1_4	no	19	-	-
CT32B0_MAT2	0	PIO0_1	no	4	3	B2
		PIO1_5	no	20	-	-
CT32B0_MAT3	0	PIO0_6	no	32	21	C3
		PIO1_6	no	11	-	-
32-bit counter/tim	ner CT32B1					
CT32B1_CAP0	I	PIO0_7	10 ns[2]	33	22	C4
		PIO0_20	no	22	15	-
		PIO1_4	no	19	-	-
CT32B1_CAP1	I	PIO0_21	no	23	16	-
		PIO1_5	no	20	-	-
CT32B1_CAP2	I	PIO0_22	10 ns[2]	27	17	-
		PIO1_6	no	11	-	-
CT32B1_MAT0	0	PIO0_8	no	34	23	C2
		PIO0_31	no	24	-	-
		PIO1_8	no	26	-	-
CT32B1_MAT1	0	PIO0_9	no	35	24	D4
-		PIO0_27	no	43	28	-
		PIO1_7	no	25	_	_

Chapter 7: LPC11Axx Pin configuration

Table 86. Pin multiplexing

Function	Туре			LQFP48	HVQFN33	WCSP20
		Port	Glitch filter	Pin	Pin	Ball
CT32B1_MAT2	0	PIO0_10	no	38	25	D3
		PIO0_22	no	27	17	-
		PIO1_9	no	12	-	-
CT32B1_MAT3	0	PIO0_11	no	39	26	D2
		PIO1_1	no	36	-	-
		PIO1_0	no	31	-	-
Supply and ground	d pins					
$V_{\rm DD(IO)}$	Supply	-	-	8	6	E2
V _{DD(3V3)}	Supply	-	-	44	29	E2
V _{SS}	Ground	-	-	42	33	E3
V _{SS(IO)}	Ground	-	-	5	33	E3

^[1] Always on.

<u>Table 87</u> shows all pins in order of their port number. The default function after reset is listed first. All port pins PIO0_0 to PIO1_9 have internal pull-up resistors enabled after reset with the exception of the true open-drain pins PIO0_2 and PIO0_3.

Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed through the IOCON registers for each of the port pins.

Table 87. LPC11A1x pin description table

Symbol	Pin	Pin/Ball				Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
RESET/PIO0_0	3	2	C1	[2]	I	I; PU	RESET — External reset input with fixed 20 ns glitch filter: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states and processor execution to begin at address 0.
					I/O	-	PIO0_0 — General purpose digital input/output pin.
PIO0_1/RXD/CLKOUT/ CT32B0_MAT2/SSEL0/	4	3	B2	2 [3]	I/O	I; PU	PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.
CLKIN					I	-	RXD — Receiver data input for USART.
					0	-	CLKOUT — Clock output.
					0	-	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					I/O	-	SSEL0 — Slave Select for SSP0.
					I	-	CLKIN — External clock input.

^[2] Programmable on/off. By default, the glitch filter is disabled.

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
PIO0_2/SCL/ACMP_O/ TCK/SWCLK/ CT16B0_CAP0	/ 15 10	10	A1	<u>[4]</u>	I/O	I; IA	PIO0_2 — General purpose digital input/output pin. High-current sink (20 mA) or standard-current sink (4 mA) programmable; true open-drain for all pin functions. Input glitch filter (50 ns) capable.
					I/O	-	${\bf SCL}$ — ${\bf I^2C}\text{-bus}$ clock (true open-drain) input/output. Input glitch filter (50 ns) capable.
					0	-	ACMP_O — Analog comparator output.
					I	-	TCK/SWCLK — Serial Wire Debug Clock (secondary for LQFP and HVQFN packages). Input glitch filter (50 ns) capable. For the WLCSP20 package only, this pin is configured to the SWCLK function by the boot loader after reset.
					I	-	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.Input glitch filter (50 ns) capable.
PIO0_3/SDA/ACMP_O/ SWDIO/CT16B1_CAP0	16 11	3 11	B1	31 ^[4]	I/O	I; IA	PIO0_3 — General purpose digital input/output pin. High-current sink (20 mA) or standard-current sink (4 mA) programmable; true open-drain for all pin functions. Input glitch filter (50 ns) capable.
					I/O	-	${\bf SDA}$ — ${\bf I^2C}$ -bus data (true open-drain) input/output. Input glitch filter (50 ns) capable.
					0	-	ACMP_O — Analog comparator output.
					I/O	-	SWDIO — Serial Wire Debug I/O (secondary for LQFP and HVQFN packages). Input glitch filter (50 ns) capable. For the WLCSP20 package only, this pin is configured to the SWDIO function by the boot loader after reset.
					I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. Input glitch filter (50 ns) capable.
PIO0_4/R/AOUT/ CT16B0_MAT1/MOSI0	28	18	A4	<u>[5]</u>	I/O	I; PU	PIO0_4 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					-	-	R — Reserved.
					0	-	AOUT — D/A converter output.
					0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					I/O	-	MOSI0 — Master Out Slave In for SSP0. Input glitch filter (10 ns) capable.
TCK/SWCLK/PIO0_5/ R/CT16B0_MAT2/ SCK0	29	19	-	[7]	I	I; PU	TCK/SWCLK — Test clock TCK for JTAG interface and primary (default) Serial Wire Debug Clock. Input glitch filter (10 ns) capable.
					I/O	-	PIO0_5 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					-	-	R — Reserved.
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
					I/O	-	SCK0 — Serial clock for SSP0. Input glitch filter (10 ns) capable.

UM10527 NXP Semiconductors

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
TCK/SWCLK/PIO0_5/ VDDCMP/ CT16B0_MAT2/	-	-	ВЗ	[5] [6]	I	I; PU	TCK/SWCLK — Test clock TCK for JTAG interface and secondary Serial Wire Debug ClocK. Use PIO0_2 for the default TCK/SWCLK function. Input glitch filter (10 ns) capable.
SCK0					I/O	-	PIO0_5 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	VDDCMP — Analog comparator alternate reference voltage.
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
					I/O	-	SCK0 — Serial clock for SSP0. Input glitch filter (10 ns) capable.
TDI/PIO0_6/AD0/ CT32B0_MAT3/MISO0	32	21	C3	3 [7]	I	I; PU	TDI — Test Data In for JTAG interface. Input glitch filter (10 ns) capable.
					I/O	-	PIO0_6 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	AD0 — A/D converter input 0.
					0	-	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
					I/O	-	MISO0 — Master In Slave Out for SSP0. Input glitch filter (10 ns) capable.
TMS/PIO0_7/AD1/ CT32B1_CAP0/	33	22	C4	1 [7]	I	I; PU	TMS — Test Mode Select for JTAG interface. Input glitch filter (10 ns) capable.
CT16B0_MAT0					I/O	-	PIO0_7 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	AD1 — A/D converter input 1.
					1	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. Input glitch filter (10 ns) capable.
					0	-	CT16B0_MAT0 — Match output 2 for 16-bit timer 0.
TDO/PIO0_8/AD2/	34	23	C2	[7]	0	I; PU	TDO — Test Data Out for JTAG interface.
CT32B1_MAT0/SCK1					I/O	-	PIO0_8 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	AD2 — A/D converter input 2.
					0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
					I/O	-	SCK1 — Serial clock for SSP1. Input glitch filter (10 ns) capable.

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
TRST/PIO0_9/AD3/ CT32B1_MAT1/	35	24	D4	[7]	I	I; PU	TRST — Test Reset for JTAG interface. Input glitch filter (10 ns) capable.
CT16B0_MAT1/CTS					I/O	-	PIO0_9 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	AD3 — A/D converter, input 3.
					0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
					0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
					I	-	CTS — Clear To Send input for USART. Input glitch filter (10 ns) capable.
SWDIO/PIO0_10/AD4/ CT32B1_MAT2/ CT16B0_MAT2/RTS	38	25	D3	3 [7]	I/O	I; PU	SWDIO — Primary (default) Serial Wire Debug I/O for the LQFP48 and HVQFN33 packages. For the WLCSP20 package, use PIOO_3. Input glitch filter (10 ns) capable.
					I/O	-	PIO0_10 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	AD4 — A/D converter, input 4.
					0	-	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
					0	-	RTS — Request To Send output for USART.
PIO0_11/SCLK/ AD5/CT32B1_MAT3/	39	26	D2	<u>[7]</u>	I/O	I; PU	PIO0_11 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT32B0_CAP0					I/O	-	SCLK — Serial clock for USART. Input glitch filter (10 ns) capable.
					I	-	AD5 — A/D converter, input 5.
					0	-	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
					I	-	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. Input glitch filter (10 ns) capable.
PIO0_12/RXD/	46	31	E1	[3]	I/O	I; PU	PIO0_12 — General purpose digital input/output pin.
ACMP_O/ CT32B0_MAT0/SCL/ CLKIN					I	-	RXD — Receiver data input for USART. This pin is used for ISP communication.
CLIM					0	-	ACMP_O — Analog comparator output.
					0	-	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
					I/O	-	SCL — I ² C-bus clock input/output. This is not an I ² C-bus open-drain pin ^[8] .
					I	-	CLKIN — External clock input.

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
PIO0_13/TXD/ ACMP_I2/	47	32	D1	[7]	I/O	I; PU	PIO0_13 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT32B0_MAT1/SDA					0	-	TXD — Transmitter data output for USART. This pin is used for ISP communication.
					I	-	ACMP_I2 — Analog comparator input 2.
					0	-	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
					I/O	-	SDA — I ² C-bus data input/output. This is not an I ² C-bus open-drain pin ^[8] . Input glitch filter (10 ns) capable.
PIO0_14/MISO1/AD6/ 3 CT32B0_CAP1/ CT16B1_MAT1/ VDDCMP	30	20	-	<u>[5]</u>	I/O	I; PU	PIO0_14 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I/O	-	MISO1 — Master In Slave Out for SSP1. Input glitch filter (10 ns) capable.
					I	-	AD6 — A/D converter, input 6.
					1	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
					I	-	VDDCMP — Analog comparator alternate reference voltage.
PIO0_14/MISO1/AD6/ CT32B0_CAP1/	-	-	В4	<u>[7]</u>	I/O	I; PU	PIO0_14 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT16B1_MAT1					I/O	-	MISO1 — Master In Slave Out for SSP1. Input glitch filter (10 ns) capable.
					I	-	AD6 — A/D converter, input 6.
					I	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO0_15/TXD/AD7/ CT32B0_CAP2/SDA	41	27	E4	<u>[7]</u>	I/O	I; PU	PIO0_15 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					0	-	TXD — Transmitter data output for USART.
					I	-	AD7 — A/D converter, input 7.
					I	-	CT32B0_CAP2 — Capture input 2 for 32-bit timer 0. Input glitch filter (10 ns) capable.
					I/O	-	SDA — I ² C-bus data input/output. This is not an I ² C-bus open-drain pin ^[8] . Input glitch filter (10 ns) capable.

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
PIO0_16/ ATRG0/ACMP_I3/	18	13	A2	<u>[7]</u>	I/O	I; PU	PIO0_16 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT16B0_CAP1/SCL					1	-	ATRG0 — Conversion trigger 0 for ADC or DAC. Input glitch filter (10 ns) capable.
					I	-	ACMP_I3 — Analog comparator input 3.
					I	-	CT16B0_CAP1 — Capture input 1 for 16-bit timer 0. Input glitch filter (10 ns) capable.
					I/O	-	SCL — I ² C-bus clock input/output. This is not an I ² C-bus open-drain pin ^[8] . Input glitch filter (10 ns) capable.
PIO0_17/ 2 ATRG1/ACMP_I4/ CT16B0_CAP2/ CT16B0_MAT0	21	14	А3	[7]	I/O	I; PU	PIO0_17 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
					I	-	ATRG1 — Conversion trigger 1 for ADC or DAC. Input glitch filter (10 ns) capable.
					I	-	ACMP_I4 — Analog comparator input 4.
					I	-	CT16B0_CAP2 — Capture input 2 for 16-bit timer 0. Input glitch filter (10 ns) capable.
					0	-	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
PIO0_18/R/SSEL0/	10	8	-	[3]	I/O	I; PU	PIO0_18 — General purpose digital input/output pin.
CT16B0_CAP0/ CT16B1_CAP1					-	-	R — Reserved.
CTIODI_CALI					I/O	-	SSEL0 — Slave Select for SSP0.
					I	-	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
					I	-	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
PIO0_19/CLKIN/	14	9	-	[3]	I/O	I; PU	PIO0_19 — General purpose digital input/output pin.
CLKOUT/ MOSI0/CT16B1_MAT0					I	-	CLKIN — External clock input.
WOSIO/CTTOBT_WATO					0	-	CLKOUT — Clock output.
					I/O	-	MOSI0 — Master Out Slave In for SSP0.
					0	-	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
PIO0_20/R/SCK0/	22	15	-	[3]	I/O	I; PU	PIO0_20 — General purpose digital input/output pin.
CT32B1_CAP0/					-	-	R — Reserved.
CT16B1_MAT2					I/O	-	SCK0 — Serial clock for SSP0.
					I	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
					0	-	CT16B1_MAT2 — Match output 2 for 16-bit timer 1.

Table 87. LPC11A1x pin description table

PIO0_21/CTS/ 23 16 - 3 1/0 I; PU PIO0_21 — General purpose digital input/output pin. If configured as output, this pin is a high-current source of driver (20 mA).	
CT32B1_CAP1/SCLK CT32B1_CAP1/SCLK CTS_Clear To Send input for USART.	
O - ACMP_O — Analog comparator output. I - CT32B1_CAP1 — Capture input 1 for 32-bit timer 1. I/O - SCLK — Serial clock for USART. PIO0_22/MISO0/ ACMP_I5/ CT32B1_MAT2/ CT32B1_MAT2/ CT32B1_CAP2 I/O - MISOO — Master In Slave Out for SSP0. Input glitch fill ns) capable. I - ACMP_I5 — Analog comparator input 5. O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filler (10 ns) capable. PIO0_23/RTS/ ACMP_O/ ACMP_O — RTS — Request To Send output for USART.	
I - CT32B1_CAP1 — Capture input 1 for 32-bit timer 1. I/O - SCLK — Serial clock for USART. PIO0_22/MISO0/ ACMP_I5/ CT32B1_MAT2/ CT32B1_CAP2 I/O - MISO0 — Master In Slave Out for SSP0. Input glitch fill ns) capable. I - ACMP_I5 — Analog comparator input 5. O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filler (10 ns) capable. PIO0_23/RTS/ ACMP_O/ ACMP_O I - PIO0_23 — General purpose digital input/output pin. RTS — Request To Send output for USART.	
PIO0_22/MISO0/ ACMP_I5/ CT32B1_MAT2/ CT32B1_CAP2 I/O - SCLK — Serial clock for USART. PIO0_22/MISO0/ ACMP_I5/ CT32B1_MAT2/ CT32B1_CAP2 I/O - MISO0 — Master In Slave Out for SSP0. Input glitch fill ns) capable. I - ACMP_I5 — Analog comparator input 5. O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filter (10 ns) capable. PIO0_23/RTS/ ACMP_O/ ACMP_O/ RTS — Request To Send output for USART.	
PIO0_22/MISO0/ ACMP_I5/ CT32B1_MAT2/ CT32B1_CAP2 I/O I; PU PIO0_22 — General purpose digital input/output pin. In glitch filter (10 ns) capable. I/O - MISO0 — Master In Slave Out for SSP0. Input glitch fill ns) capable. I - ACMP_I5 — Analog comparator input 5. O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filter (10 ns) capable. PIO0_23/RTS/ ACMP_O/ ACMP_O/ RTS — Request To Send output for USART.	
ACMP_I5/ CT32B1_MAT2/ CT32B1_CAP2 I/O - MISOO — Master In Slave Out for SSP0. Input glitch fill ns) capable. I - ACMP_I5 — Analog comparator input 5. O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filter (10 ns) capable. PIO0_23/RTS/ ACMP_O/ ACMP_O/ RTS — Request To Send output for USART.	
CT32B1_CAP2 I	put
O - CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filter (10 ns) capable. PIO0_23/RTS/ 45 30 - 3 I/O I; PU PIO0_23 — General purpose digital input/output pin. ACMP_O/ RTS — Request To Send output for USART.	ter (10
PIO0_23/RTS/ ACMP_O/ I - CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. In glitch filter (10 ns) capable. PIO0_23/RTS/ ACMP_O/ O - RTS — Request To Send output for USART.	
glitch filter (10 ns) capable. PIO0_23/RTS/ 45 30 - 3 I/O I; PU PIO0_23 — General purpose digital input/output pin. ACMP_O/ O - RTS — Request To Send output for USART.	
ACMP_O/ O - RTS — Request To Send output for USART.	put
O - NIO — REQUEST IO SELIO GUIDOLI DI CISARTI.	
C 132BU CAPU/SCIK	
O - ACMP_O — Analog comparator output.	
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.	
I/O - SCLK — Serial clock for USART.	
PIO0_24/SCL/CLKIN/ 9 7 - [3] I/O I; PU PIO0_24 — General purpose digital input/output pin.	
CT16B1_CAP0 I/O - SCL — I ² C-bus clock input/output. This is not an I ² C-bus open-drain pin ^[8] .	us
I - CLKIN — External clock input.	
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.	
PIO0_25/SDA/SSEL1/ 17 12 - [3] I/O I; PU PIO0_25 — General purpose digital input/output pin.	
CT16B1_MAT0 I/O - SDA — I ² C-bus data input/output. This is not an I ² C-bu open-drain pin ^[8] .	IS
I/O - SSEL1 — Slave Select for SSP1.	
O - CT16B1_MAT0 — Match output 0 for 16-bit timer 1.	
PIO0_26/TXD/MISO1/ 1 1 - 3 I/O I; PU PIO0_26 — General purpose digital input/output pin.	
CT16B1_CAP1/ O - TXD — Transmitter data output for USART.	
CT32B0_CAP2 I/O - MISO1 — Master In Slave Out for SSP1.	
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.	
CT32B0_CAP2 — Capture input 2 for 32-bit timer 0.	

Table 87. LPC11A1x pin description table

Symbol Pin/Ball					Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
PIO0_27/MOSI1/ ACMP_I1/	43	28	-	<u>[7]</u>	I/O	I; PU	PIO0_27 — General purpose digital input/output pin. Input glitch filter (10 ns) capable.
CT32B1_MAT1/ CT16B1_CAP2					I/O	-	MOSI1 — Master Out Slave In for SSP1. Input glitch filter (10 ns) capable.
					I	-	ACMP_I1 — Analog comparator input 1.
					0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
					I	-	CT16B1_CAP2 — Capture input 2 for 16-bit timer 1. Input glitch filter (10 ns) capable.
PIO0_28/DTR/SSEL1/	EL1/ 2	-	-	[3]	I/O	I; PU	PIO0_28 — General purpose digital input/output pin.
CT32B0_CAP0					0	-	DTR — Data Terminal Ready output for USART.
					I/O	-	SSEL1 — Slave Select for SSP1.
					I	-	CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
PIO0_29/DSR/SCK1/	13	-	-	[3]	I/O	I; PU	PIO0_29 — General purpose digital input/output pin.
CT32B0_CAP1					I	-	DSR — Data Set Ready input for USART.
					I/O	-	SCK1 — Serial clock for SSP1.
					I	-	CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
PIO0_30/RI/MOSI1/	40	-	-	[3]	I/O	I; PU	PIO0_30 — General purpose digital input/output pin.
CT32B0_MAT0/ CT16B0_CAP0					I	-	RI — Ring Indicator input for USART.
CTTOBO_CALO					I/O	-	MOSI1 — Master Out Slave In for SSP1.
					0	-	CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
					I	-	CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
PIO0_31/RI/MOSI1/	24	-	-	[3]	I/O	I; PU	PIO0_31 — General purpose digital input/output pin.
CT32B1_MAT0/ CT16B1_CAP1					I	-	RI — Ring Indicator input for USART.
CTIODI_CAFT					I/O	-	MOSI1 — Master Out Slave In for SSP1.
					0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
					I	-	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
PIO1_0/DCD/SCK0/	31	-	-	[3]	I/O	I; PU	PIO1_0 — General purpose digital input/output pin.
CT32B1_MAT3/ CT16B0_MAT1					I	-	DCD — Data Carrier Detect input for USART.
CTTOBO_WATT					I/O	-	SCK0 — Serial clock for SSP0.
					0	-	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
					0	-	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
PIO1_1/DTR/SSEL0/	36	-	-	[3]	I/O	I; PU	PIO1_1 — General purpose digital input/output pin.
CT32B1_MAT3/					0	-	DTR — Data Terminal Ready output for USART.
CT16B1_MAT0					I/O	-	SSEL0 — Slave Select for SSP0.
					0	-	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
					0	-	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state	Description
	LQFP48	HVQFN33	WLCSP20				
PIO1_2/DSR/MISO0/	37	-	-	[3]	I/O	I; PU	PIO1_2 — General purpose digital input/output pin.
CT16B1_MAT2/ CT16B1_MAT1					I	-	DSR — Data Set Ready input for USART.
CTTODT_WATT					I/O	-	MISO0 — Master In Slave Out for SSP0.
					0	-	CT16B1_MAT2 — Match output 2 for 16-bit timer 1.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO1_3/RI/MOSI0/	48	-	-	[3]	I/O	I; PU	PIO1_3 — General purpose digital input/output pin.
CT16B1_CAP0					I	-	RI — Ring Indicator input for USART.
					I/O	-	MOSI0 — Master Out Slave In for SSP0.
					I	-	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
PIO1_4/RXD/SSEL1/	19	-	-	[3]	I/O	I; PU	PIO1_4 — General purpose digital input/output pin.
CT32B0_MAT1/					I	-	RXD — Receiver data input for USART.
CT32B1_CAP0/ CT16B0_CAP1					I/O	-	SSEL1 — Slave Select for SSP1.
_					0	-	CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
					I	-	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
					I	-	CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.
PIO1_5/TXD/SCK1/	20	-	-	[3]	I/O	I; PU	PIO1_5 — General purpose digital input/output pin.
CT32B0_MAT2/ CT32B1_CAP1/					0	-	TXD — Transmitter data output for USART.
CT16B0_CAP2					I/O	-	SCK1 — Serial clock for SSP1.
					0	-	CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
					I	-	CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.
					I	-	CT16B0_CAP2 — Capture input 2 for 16-bit timer 0.
PIO1_6/RTS/MOSI1/	11	-	-	[3]	I/O	I; PU	PIO1_6 — General purpose digital input/output pin.
CT32B0_MAT3/ CT32B1_CAP2/					0	-	RTS — Request To Send output for USART.
CT16B0_MAT0					I/O	-	MOSI1 — Master Out Slave In for SSP1.
					0	-	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
					I	-	CT32B1_CAP2 — Capture input 2 for 32-bit timer 1.
					0	-	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
PIO1_7/CTS/MOSI0/	25	-	-	[3]	I/O	I; PU	PIO1_7 — General purpose digital input/output pin.
CT32B1_MAT1/ CT16B0_MAT2/					I	-	CTS — Clear To Send input for USART.
CT16B0_MA12/					I/O	-	MOSI0 — Master Out Slave In for SSP0.
_					0	-	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
					0	-	CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
					I	-	CT16B1_CAP2 — Capture input 2 for 16-bit timer 1.

Chapter 7: LPC11Axx Pin configuration

Table 87. LPC11A1x pin description table

Symbol	Pin	/Ball			Туре	Reset state [1]	Description
	LQFP48	HVQFN33	WLCSP20				
PIO1_8/RXD / MISO1/	26	-	-	[3]	I/O	I; PU	PIO1_8 — General purpose digital input/output pin.
CT32B1_MAT0/ CT16B1_MAT1					I	-	RXD — Receiver data input for USART.
CI10BI_MAII					I/O	-	MISO1 — Master In Slave Out for SSP1.
					0	-	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
					0	-	CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
PIO1_9/DCD/R/ CT32B1_MAT2 / CT16B1_MAT2	12	-	-	[3]	I/O	I; PU	PIO1_9 — General purpose digital input/output pin.
					I	-	DCD — Data Carrier Detect input for USART.
					-	-	R — Reserved.
					0	-	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
					0	-	CT16B1_MAT2 — Match output 2 for 16-bit timer 1.
XTALIN	6	4	-	[9]	-	-	Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.
XTALOUT	7	5	-	[9]	-	-	Output from the oscillator amplifier.
$V_{DD(IO)}$	8	6	E2	[10] [11]	-	-	3.3 V input/output supply voltage.
V _{SS(IO)}	5	33	E3	[12]	-	-	Ground.
V _{DD(3V3)}	44	29	E2	[10] [11]	-	-	3.3 V supply voltage to the analog blocks, internal regulator, and internal clock generator circuits. Also used as the ADC reference voltage.
V _{SS}	42	33	E3	[12]	-	-	Ground.

- [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled.
- [2] See Figure 10 for the reset configuration.
- [3] 5 V tolerant pin providing standard digital I/O functions with configurable modes and configurable hysteresis (Figure 9).
- [4] | 12C-bus pins compliant with the 12C-bus specification for 12C standard mode, 12C Fast-mode, and 12C Fast-mode Plus.
- [5] Not a 5 V tolerant pin due to special analog functionality. Pin provides standard digital I/O functions with configurable modes, configurable hysteresis, and analog I/O. When configured as an analog I/O, the digital section of the pin is disabled (Figure 9).
- [6] If this pin is configured for its VDDCMP function, it cannot be used for SWCLK when the part is on the board. The bypass filter of the power supply filters out the SWCLK clock input signal.
- [7] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog I/O. When configured as an analog I/O, digital section of the pin is disabled, and the pin is not 5 V tolerant (Figure 9).
- [8] I²C-bus pins are standard digital I/O pins and have limited performance and electrical characteristics compared to the full I²C-bus specification. Pins can be configured with an on-chip pull-up resistor (pMOS device) and with open-drain mode. In this mode, typical bit rates of up to 100 kbit/s with 20 pF load are supported if the internal pull-ups are enabled. Higher bit rates can be achieved with an external resistor.
- [9] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.
- [10] If separate supplies are used for $V_{DD(3V3)}$ and $V_{DD(1O)}$, ensure that the power supply pins are filtered for noise with respect to their corresponding grounds V_{SS} and $V_{SS(1O)}$ (LQFP48 package). Using separate filtered supplies reduces the noise to the analog blocks.

UM10527

Chapter 7: LPC11Axx Pin configuration

[11] If separate supplies are used for $V_{DD(3V3)}$ and $V_{DD(IO)}$, ensure that the voltage difference between both supplies is smaller than or equal to 0.5 V.

[12] Thermal pad (HVQFN33 pin package). Connect to ground.

UM10527

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/ Transmitter (USART)

Rev. 5 — 21 January 2013

User manual

8.1 How to read this chapter

The USART block is identical for all LPC11Axx parts. The availability of modem control signals is package-dependent and dependent on settings in the I/O Configuration block. See applicable tables in the range <u>Table 80</u> through <u>Table 85</u>.

8.2 Basic configuration

The USART is configured as follows:

- Pins: The USART pins must be configured in the corresponding IOCON registers before the USART clocks are enabled (see Section 6.4).
- The USART block is enabled through the SYSAHBCLKCTRL register (see Table 20).
- The peripheral USART clock (PCLK), which is used by the USART baud rate generator, is controlled by the UARTCLKDIV register (see Table 22).

8.3 Features

- 16-byte receive and transmit FIFOs.
- Register locations conform to '550 industry standard.
- Receiver FIFO trigger points at 1, 4, 8, and 14 bytes.
- Built-in baud rate generator.
- software or hardware flow control.
- RS-485/EIA-485 9-bit mode support with output enable.
- Optional RTS/CTS flow control and other modem control signals.
- Optional 1X-clock send or receive.
- Optional ISO 7816-3 compliant smart card interface.

8.4 Pin description

Some of the following pins are not available in some packages.

Table 88. USART pin description

Pin	Туре	Description
RXD	Input	Serial Input. Serial receive data.
TXD	Output	Serial Output. Serial transmit data (input/output in smart card mode).
RTS	Output	Request To Send. RS-485 direction control pin.
CTS	Input	Clear To Send.
DTR	Output	Data Terminal Ready.
DSR	Input	Data Set Ready.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 88. USART pin description

Pin	Туре	Description
DCD	Input	Data Carrier Detect.
RI	Input	Ring Indicator.
SCLK	I/O	Serial Clock.

8.5 Register description

The USART contains registers organized as shown in <u>Table 89</u>. The Divisor Latch Access Bit (DLAB) is contained in LCR[7] and enables access to the Divisor Latches.

Offsets/addresses not shown in Table 89 are Reserved.

Table 89. Register overview: USART (base address: 0x4000 8000)

Name	Access	Address offset	Description	Reset Value[1]
RBR	RO	0x0	Receiver Buffer Register. Contains the next received character to be read. (DLAB=0) $$	NA
THR	WO	0x0	Transmit Holding Register. The next character to be transmitted is written here. (DLAB=0)	NA
DLL	R/W	0x0	Divisor Latch LSB. Least significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider. (DLAB=1)	0x01
DLM	R/W	0x4	Divisor Latch MSB. Most significant byte of the baud rate divisor value. The full divisor is used to generate a baud rate from the fractional rate divider. (DLAB=1)	0
IER	R/W	0x4	Interrupt Enable Register. Contains individual interrupt enable bits for the 7 potential USART interrupts. (DLAB=0)	0
IIR	RO	0x8	Interrupt ID Register. Identifies which interrupt(s) are pending.	0x01
FCR	WO	0x8	FIFO Control Register. Controls USART FIFO usage and modes.	0
LCR	R/W	0xC	Line Control Register. Contains controls for frame formatting and break generation.	0
MCR	R/W	0x10	Modem Control Register.	0
LSR	RO	0x14	Line Status Register. Contains flags for transmit and receive status, including line errors.	0x60
MSR	RO	0x18	Modem Status Register.	0
SCR	R/W	0x1C	Scratch Pad Register. Eight-bit temporary storage for software.	0
ACR	R/W	0x20	Auto-baud Control Register. Contains controls for the auto-baud feature.	0
ICR	R/W	0x24	IrDA Control Register. Enables and configures the IrDA (remote control) mode.	0
FDR	R/W	0x28	Fractional Divider Register. Generates a clock input for the baud rate divider.	0x10
OSR	R/W	0x2C	Oversampling Register. Controls the degree of oversampling during each bit time.	0xF0
TER	R/W	0x30	Transmit Enable Register. Turns off USART transmitter for use with software flow control.	0x80
SCICTRL	R/W	0x48	Smart Card Interface Control register. Enables and configures the Smart Card Interface feature.	0

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 89. Register overview: USART (base address: 0x4000 8000)

Name	Access	Address offset	Description	Reset Value ^[1]
RS485CTRL	R/W	0x4C	RS-485/EIA-485 Control. Contains controls to configure various aspects of RS-485/EIA-485 modes.	0
ADRMATCH	R/W	0x50	RS-485/EIA-485 address match. Contains the address match value for RS-485/EIA-485 mode.	0
RS485DLY	R/W	0x54	RS-485/EIA-485 direction control delay.	0
SYNCCTRL	R/W	0x58	Synchronous mode control register.	0

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

8.5.1 USART Receiver Buffer Register (DLAB = 0, Read Only)

The RBR is the top byte of the USART RX FIFO. The top byte of the RX FIFO contains the oldest character received and can be read via the bus interface. The LSB (bit 0) contains the first-received data bit. If the character received is less than 8 bits, the unused MSBs are padded with zeroes.

The Divisor Latch Access Bit (DLAB) in the LCR must be zero in order to access the RBR. The RBR is always Read Only.

Since PE, FE and BI bits (see <u>Table 101</u>) correspond to the byte on the top of the RBR FIFO (i.e. the one that will be read in the next read from the RBR), the right approach for fetching the valid pair of received byte and its status bits is first to read the content of the LSR register, and then to read a byte from the RBR.

Table 90. USART Receiver Buffer Register when DLAB = 0 (RBR - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset Value
7:0	RBR	The USART Receiver Buffer Register contains the oldest received byte in the USART RX FIFO.	undefined
31:8	-	Reserved	-

8.5.2 USART Transmitter Holding Register (DLAB = 0, Write Only)

The THR is the top byte of the USART TX FIFO. The top byte is the newest character in the TX FIFO and can be written via the bus interface. The LSB represents the first bit to transmit.

The Divisor Latch Access Bit (DLAB) in the LCR must be zero in order to access the THR. The THR is always Write Only.

Table 91. USART Transmitter Holding Register when DLAB = 0 (THR - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset Value
7:0	THR	Writing to the USART Transmit Holding Register causes the data to be stored in the USART transmit FIFO. The byte will be sent when it is the oldest byte in the FIFO and the transmitter is available.	NA
31:8	-	Reserved	-

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

8.5.3 USART Divisor Latch LSB and MSB Registers (DLAB = 1)

The USART Divisor Latch is part of the USART Baud Rate Generator and holds the value used (optionally with the Fractional Divider) to divide the UART_PCLK clock in order to produce the baud rate clock, which must be the multiple of the desired baud rate that is specified by the Oversampling Register (typically 16X). The DLL and DLM registers together form a 16-bit divisor. DLL contains the lower 8 bits of the divisor and DLM contains the higher 8 bits. A zero value is treated like 0x0001. The Divisor Latch Access Bit (DLAB) in the LCR must be one in order to access the USART Divisor Latches. Details on how to select the right value for DLL and DLM can be found in Section 8.5.16.

Table 92. USART Divisor Latch LSB Register when DLAB = 1 (DLL - address 0x4000 8000) bit description

Bit	Symbol	Description	Reset value
7:0	DLLSB	The USART Divisor Latch LSB Register, along with the DLM register, determines the baud rate of the USART.	0x01
31:8	-	Reserved	-

Table 93. USART Divisor Latch MSB Register (DLM - address 0x4000 8004 when DLAB = 1) bit description

Bit	Symbol	Description	Reset value
7:0	DLMSB	The USART Divisor Latch MSB Register, along with the DLL register, determines the baud rate of the USART.	0x00
31:8	-	Reserved	-

8.5.4 USART Interrupt Enable Register (DLAB = 0)

The IER is used to enable the various USART interrupt sources.

Table 94. USART Interrupt Enable Register when DLAB = 0 (IER - address 0x4000 8004) bit description

Bit	Symbol	Value	Description	Reset value
0	RBRINTEN		RBR Interrupt Enable. Enables the Receive Data Available interrupt. It also controls the Character Receive Time-out interrupt.	0
		0	Disable the RDA interrupt.	
		1	Enable the RDA interrupt.	
1	THREINTEN		THRE Interrupt Enable. Enables the THRE interrupt. The status of this interrupt can be read from LSR[5].	0
		0	Disable the THRE interrupt.	
		1	Enable the THRE interrupt.	
2	RLSINTEN		Enables the Receive Line Status interrupt. The status of this interrupt can be read from LSR[4:1].	-
		0	Disable the RLS interrupt.	
		1	Enable the RLS interrupt.	
3	MSINTEN		Enables the Modem Status interrupt. The components of this interrupt can be read from the MSR.	
		0	Disable the MS interrupt.	
		1	Enable the MS interrupt.	

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 94. USART Interrupt Enable Register when DLAB = 0 (IER - address 0x4000 8004) bit description ...continued

	•			
Bit	Symbol	Value	Description	Reset value
7:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
8	ABEOINTEN		Enables the end of auto-baud interrupt.	0
		0	Disable end of auto-baud Interrupt.	
		1	Enable end of auto-baud Interrupt.	
9	ABTOINTEN		Enables the auto-baud time-out interrupt.	0
		0	Disable auto-baud time-out Interrupt.	
		1	Enable auto-baud time-out Interrupt.	
31:10) -		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

8.5.5 USART Interrupt Identification Register

IIR provides a status code that denotes the priority and source of a pending interrupt. The interrupts are frozen during a IIR access. If an interrupt occurs during a IIR access, the interrupt is recorded for the next IIR access.

Table 95. USART Interrupt Identification Register (IIR - address 0x4004 8008, RO) bit description

Bit	Symbol	Value	Description	Reset value
0	INTSTATUS		Interrupt status. Note that IIR[0] is active low. The pending interrupt can be determined by evaluating IIR[3:1].	1
		0	At least one interrupt is pending.	
		1	No interrupt is pending.	
3:1	INTID		Interrupt identification. IER[3:1] identifies an interrupt corresponding to the USART Rx FIFO. All other values of IER[3:1] not listed below are reserved.	0
		0x3	1 - Receive Line Status (RLS).	
		0x2	2a - Receive Data Available (RDA).	
		0x6	2b - Character Time-out Indicator (CTI).	
		0x1	3 - THRE Interrupt.	
		0x0	4 - Modem status	
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
7:6	FIFOEN		These bits are equivalent to FCR[0].	0
8	ABEOINT		End of auto-baud interrupt. True if auto-baud has finished successfully and interrupt is enabled.	0
9	ABTOINT		Auto-baud time-out interrupt. True if auto-baud has timed out and interrupt is enabled.	0
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Bits IIR[9:8] are set by the auto-baud function and signal a time-out or end of auto-baud condition. The auto-baud interrupt conditions are cleared by setting the corresponding Clear bits in the Auto-baud Control Register.

If the IntStatus bit is one and no interrupt is pending and the IntId bits will be zero. If the IntStatus is 0, a non auto-baud interrupt is pending in which case the IntId bits identify the type of interrupt and handling as described in <u>Table 96</u>. Given the status of IIR[3:0], an interrupt handler routine can determine the cause of the interrupt and how to clear the active interrupt. The IIR must be read in order to clear the interrupt prior to exiting the Interrupt Service Routine.

The USART RLS interrupt (IIR[3:1] = 011) is the highest priority interrupt and is set whenever any one of four error conditions occur on the USART RX input: overrun error (OE), parity error (PE), framing error (FE) and break interrupt (BI). The USART Rx error condition that set the interrupt can be observed via LSR[4:1]. The interrupt is cleared upon a LSR read.

The USART RDA interrupt (IIR[3:1] = 010) shares the second level priority with the CTI interrupt (IIR[3:1] = 110). The RDA is activated when the USART Rx FIFO reaches the trigger level defined in FCR7:6 and is reset when the USART Rx FIFO depth falls below the trigger level. When the RDA interrupt goes active, the CPU can read a block of data defined by the trigger level.

The CTI interrupt (IIR[3:1] = 110) is a second level interrupt and is set when the USART Rx FIFO contains at least one character and no USART Rx FIFO activity has occurred in 3.5 to 4.5 character times. Any USART Rx FIFO activity (read or write of USART RSR) will clear the interrupt. This interrupt is intended to flush the USART RBR after a message has been received that is not a multiple of the trigger level size. For example, if a 105 character message was to be sent and the trigger level was 10 characters, the CPU would receive 10 RDA interrupts resulting in the transfer of 100 characters and 1 to 5 CTI interrupts (depending on the service routine) resulting in the transfer of the remaining 5 characters.

Table 96. USART Interrupt Handling

IIR[3:0] value[1]	Priority	Interrupt type	Interrupt source	Interrupt reset
0001	-	None	None	-
0110	Highest	RX Line Status / Error	OE ^[2] or PE ^[2] or BI ^[2]	LSR Read ^[2]
0100	Second	RX Data Available	Rx data available or trigger level reached in FIFO (FCR0=1)	RBR Read[3] or USART FIFO drops below trigger level

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 96. USART Interrupt Handling

(if source o interrupt) o THR write					
Time-out indication character input or removed during a time period depending on how many characters are in FIFO and what the trigger level is set at (3.5 to 4.5 character times). The exact time will be: [(word length) × 7 - 2] × 8 + [(trigger level - number of characters) × 8 + 1] RCLKs IIR Read[4] (if source of interrupt) of the trigger level - number of characters) × 8 + 1] RCLKs Output		Priority	•	Interrupt source	•
(if source of interrupt) of THR write 0000 Fourth Modem CTS, DSR, RI, or DCD. MSR Read	1100	Second	Time-out	character input or removed during a time period depending on how many characters are in FIFO and what the trigger level is set at (3.5 to 4.5 character times). The exact time will be: $[(\text{word length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length}) \times 7 - 2] \times 8 + [(\text{trigger level - number length})]$	
	0010	Third	THRE	THRE[2]	IIR Read ^[4] (if source of interrupt) or THR write
	0000	Fourth		CTS, DSR, RI, or DCD.	MSR Read

^[1] Values "0000", "0011", "0101", "0111", "1000", "1001", "1010", "1011", "1110", "1111" are reserved.

The USART THRE interrupt (IIR[3:1] = 001) is a third level interrupt and is activated when the USART THR FIFO is empty provided certain initialization conditions have been met. These initialization conditions are intended to give the USART THR FIFO a chance to fill up with data to eliminate many THRE interrupts from occurring at system start-up. The initialization conditions implement a one character delay minus the stop bit whenever THRE = 1 and there have not been at least two characters in the THR at one time since the last THRE = 1 event. This delay is provided to give the CPU time to write data to THR without a THRE interrupt to decode and service. A THRE interrupt is set immediately if the USART THR FIFO has held two or more characters at one time and currently, the THR is empty. The THRE interrupt is reset when a THR write occurs or a read of the IIR occurs and the THRE is the highest interrupt (IIR[3:1] = 001).

The modem status interrupt (IIR3:1 = 000) is the lowest priority USART interrupt and is activated whenever there is a state change on the CTS, DCD, or DSR or a trailing edge on the RI pin. The source of the modem interrupt can be read in MSR3:0. Reading the MSR clears the modem interrupt.

8.5.6 USART FIFO Control Register

The FCR controls the operation of the USART RX and TX FIFOs.

^[2] For details see Section 8.5.9 "USART Line Status Register (LSR - 0x4000 8014, Read Only)"

^[3] For details see Section 8.5.1 "USART Receiver Buffer Register (DLAB = 0, Read Only)"

^[4] For details see Section 8.5.5 "USART Interrupt Identification Register" and Section 8.5.2 "USART Transmitter Holding Register (DLAB = 0, Write Only)"

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 97. USART FIFO Control Register (FCR - address 0x4000 8008, Write Only) bit description

Bit	Symbol	Value	Description	Reset value			
0	FIFOEN		FIFO enable	0			
	0 USART FIFOs are disabled. Must not be used in the applica		USART FIFOs are disabled. Must not be used in the application.				
		1	Active high enable for both USART Rx and TX FIFOs and FCR[7:1] access. This bit must be set for proper USART operation. Any transition on this bit will automatically clear the USART FIFOs.				
1			RX FIFO Reset	0			
RES	0	No impact on either of USART FIFOs.					
	1	Writing a logic 1 to FCR[1] will clear all bytes in USART Rx FIFO, reset the pointer logic. This bit is self-clearing.					
2	TXFIFO RES		TX FIFO Reset	0			
		RES	RES	RES 0	0	No impact on either of USART FIFOs.	
		1	Writing a logic 1 to FCR[2] will clear all bytes in USART TX FIFO, reset the pointer logic. This bit is self-clearing.				
3	-	-	Reserved	0			
5:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA			
7:6	RXTL		RX Trigger Level. These two bits determine how many receiver USART FIFO characters must be received by the FIFO before an interrupt is activated.	0			
		0x0	Trigger level 0 (1 character or 0x01).				
		0x1	Trigger level 1 (4 characters or 0x04).				
		0x2	Trigger level 2 (8 characters or 0x08).				
		0x3	Trigger level 3 (14 characters or 0x0E).				
31:8	-	-	Reserved	-			

8.5.7 USART Modem Control Register

The MCR enables the modem loopback mode and controls the modem output signals.

Table 98. USART Modem Control Register (MCR - address 0x4000 8010) bit description

Bit	Symbol	Value	Description	Reset value
0	DTRCON		Source for modem output pin $\overline{\text{DTR}}$. This bit reads as 0 when modem loopback mode is active.	0
1	RTSCON		Source for modem output pin RTS. This bit reads as 0 when modem loopback mode is active.	0
3:2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

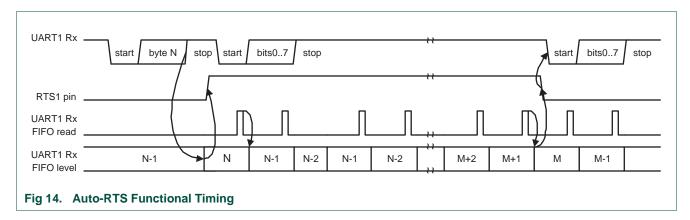
Table 98. USART Modem Control Register (MCR - address 0x4000 8010) bit description

Bit	Symbol	Value	Description	Reset value	
4	LMS		Loopback Mode Select. The modem loopback mode provides a mechanism to perform diagnostic loopback testing. Serial data from the transmitter is connected internally to serial input of the receiver. Input pin, RXD, has no effect on loopback and output pin, TXD is held in marking state. The DSR, CTS, DCD, and RI pins are ignored. Externally, DTR and RTS are set inactive. Internally, the upper four bits of the MSR are driven by the lower four bits of the MCR. This permits modem status interrupts to be generated in loopback mode by writing the lower four bits of MCR.	0	
		0	Disable modem loopback mode.		
		1	Enable modem loopback mode.		
5	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0	
6	RTSEN	RTSEN		RTS enable	0
		0	Disable auto-rts flow control.		
		1	Enable auto-rts flow control.		
7	CTSEN		CTS enable	0	
		0	Disable auto-cts flow control.		
		1	Enable auto-cts flow control.		
31:8	-	-	Reserved	-	

8.5.7.1 Auto-flow control

If auto-RTS mode is enabled the USART's receiver FIFO hardware controls the RTS output of the USART. If the auto-CTS mode is enabled the USART's transmitter will only start sending if the $\overline{\text{CTS}}$ pin is low.

8.5.7.1.1 Auto-RTS


The auto-RTS function is enabled by setting the RTSen bit. Auto-RTS data flow control originates in the RBR module and is linked to the programmed receiver FIFO trigger level. If auto-RTS is enabled, the data-flow is controlled as follows:

When the receiver FIFO level reaches the programmed trigger level, \overline{RTS} is deasserted (to a high value). It is possible that the sending USART sends an additional byte after the trigger level is reached (assuming the sending USART has another byte to send) because it might not recognize the deassertion of \overline{RTS} until after it has begun sending the additional byte. \overline{RTS} is automatically reasserted (to a low value) once the receiver FIFO has reached the previous trigger level. The reassertion of \overline{RTS} signals the sending USART to continue transmitting data.

If Auto-RTS mode is disabled, the RTSen bit controls the RTS output of the USART. If $\underline{\text{Auto}}$ -RTS mode is enabled, hardware controls the $\overline{\text{RTS}}$ output, and the actual value of $\overline{\text{RTS}}$ will be copied in the RTS Control bit of the USART. As long as Auto-RTS is enabled, the value of the RTS Control bit is read-only for software.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Example: Suppose the USART operating in type '550 mode has the trigger level in FCR set to 0x2, then, if Auto-RTS is enabled, the USART will deassert the RTS output as soon as the receive FIFO contains 8 bytes (Table 97 on page 91). The RTS output will be reasserted as soon as the receive FIFO hits the previous trigger level: 4 bytes.

8.5.7.1.2 Auto-CTS

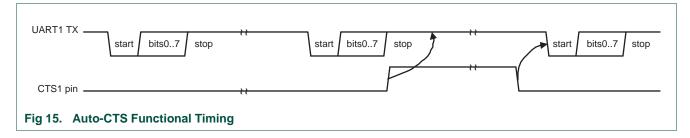

The Auto-CTS function is enabled by setting the CTSen bit. If Auto-CTS is enabled, the transmitter circuitry checks the CTS input before sending the next data byte. When CTS is active (low), the transmitter sends the next byte. To stop the transmitter from sending the following byte, CTS must be released before the middle of the last stop bit that is currently being sent. In Auto-CTS mode, a change of the CTS signal does not trigger a modem status interrupt unless the CTS Interrupt Enable bit is set, but the Delta CTS bit in the MSR will be set. Table 99 lists the conditions for generating a Modem Status interrupt.

Table 99. Modem status interrupt generation

Table 33.	Modelli Statu	is interrupt ge	, iici atioii		
Enable modem status interrupt (IER[3])	CTSen (MCR[7])	CTS interrupt enable (IER[7])	Delta CTS (MSR[0])	Delta DCD or trailing edge RI or Delta DSR (MSR[3:1])	Modem status interrupt
0	Х	Х	x	X	No
1	0	Х	0	0	No
1	0	Х	1	X	Yes
1	0	Х	Х	1	Yes
1	1	0	Х	0	No
1	1	0	Х	1	Yes
1	1	1	0	0	No
1	1	1	1	Х	Yes
1	1	1	х	1	Yes

The auto-CTS function typically eliminates the need for CTS interrupts. When flow control is enabled, a $\overline{\text{CTS}}$ state change does not trigger host interrupts because the device automatically controls its own transmitter. Without Auto-CTS, the transmitter sends any data present in the transmit FIFO and a receiver overrun error can result. Figure 15 illustrates the Auto-CTS functional timing.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

During transmission of the second character the $\overline{\text{CTS}}$ signal is negated. The third character is not sent thereafter. The USART maintains 1 on TXD as long as $\overline{\text{CTS}}$ is negated (high). As soon as $\overline{\text{CTS}}$ is asserted, transmission resumes and a start bit is sent followed by the data bits of the next character.

8.5.8 USART Line Control Register

The LCR determines the format of the data character that is to be transmitted or received.

Table 100. USART Line Control Register (LCR - address 0x4000 800C) bit description

Bit	Symbol	Value	Description	Reset Value
1:0	WLS		Word Length Select	0
		0x0	5-bit character length.	
		0x1	6-bit character length.	
		0x2	7-bit character length.	
		0x3	8-bit character length.	
2	SBS		Stop Bit Select	0
		0	1 stop bit.	
		1	2 stop bits (1.5 if LCR[1:0]=00).	
3 PE	PE		Parity Enable	0
		0	Disable parity generation and checking.	
		1	Enable parity generation and checking.	
5:4	PS		Parity Select	0
		0x0	Odd parity. Number of 1s in the transmitted character and the attached parity bit will be odd.	
		0x1	Even Parity. Number of 1s in the transmitted character and the attached parity bit will be even.	
		0x2	Forced 1 stick parity.	
		0x3	Forced 0 stick parity.	
6	ВС		Break Control	0
		0	Disable break transmission.	
		1	Enable break transmission. Output pin USART TXD is forced to logic 0 when LCR[6] is active high.	
7	DLAB		Divisor Latch Access Bit	0
		0	Disable access to Divisor Latches.	
		1	Enable access to Divisor Latches.	
31:8	-	-	Reserved	-

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

8.5.9 USART Line Status Register (LSR - 0x4000 8014, Read Only)

The LSR is a Read Only register that provides status information on the USART TX and RX blocks.

Table 101. USART Line Status Register (LSR - address 0x4000 8014, Read Only) bit description

	descrip	otion					
Bit	Symbol	Value	Description	Reset Value			
0	RDR		Receiver Data Ready:LSR[0] is set when the RBR holds an unread character and is cleared when the USART RBR FIFO is empty.				
		0	RBR is empty.				
		1	RBR contains valid data.				
1	OE		Overrun Error. The overrun error condition is set as soon as it occurs. A LSR read clears LSR[1]. LSR[1] is set when USART RSR has a new character assembled and the USART RBR FIFO is full. In this case, the USART RBR FIFO will not be overwritten and the character in the USART RSR will be lost.	0			
		0	Overrun error status is inactive.				
		1	Overrun error status is active.				
2	PE		Parity Error. When the parity bit of a received character is in the wrong state, a parity error occurs. A LSR read clears LSR[2]. Time of parity error detection is dependent on FCR[0].	0			
			Note: A parity error is associated with the character at the top of the USART RBR FIFO.				
		0	Parity error status is inactive.				
		1	Parity error status is active.				
3	FE		Framing Error. When the stop bit of a received character is a logic 0, a framing error occurs. A LSR read clears LSR[3]. The time of the framing error detection is dependent on FCR0. Upon detection of a framing error, the RX will attempt to re-synchronize to the data and assume that the bad stop bit is actually an early start bit. However, it cannot be assumed that the next received byte will be correct even if there is no Framing Error.	0			
			Note: A framing error is associated with the character at the top of the USART RBR FIFO.				
		0	Framing error status is inactive.				
		1	Framing error status is active.				
4	BI		Break Interrupt. When RXD1 is held in the spacing state (all zeros) for one full character transmission (start, data, parity, stop), a break interrupt occurs. Once the break condition has been detected, the receiver goes idle until RXD1 goes to marking state (all ones). A LSR read clears this status bit. The time of break detection is dependent on FCR[0].	0			
			Note: The break interrupt is associated with the character at the top of the USART RBR FIFO.				
		0	Break interrupt status is inactive.				
		1	Break interrupt status is active.				

User manual

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 101. USART Line Status Register (LSR - address 0x4000 8014, Read Only) bit description ...continued

The second secon				
Symbol	Value	Description	Reset Value	
THRE		Transmitter Holding Register Empty. THRE is set immediately upon detection of an empty USART THR and is cleared on a THR write.	1	
	0	THR contains valid data.		
	1	THR is empty.		
TEMT		Transmitter Empty. TEMT is set when both THR and TSR are empty; TEMT is cleared when either the TSR or the THR contain valid data.	1	
	0	THR and/or the TSR contains valid data.		
	1	THR and the TSR are empty.		
RXFE		Error in RX FIFO. LSR[7] is set when a character with a RX error such as framing error, parity error or break interrupt, is loaded into the RBR. This bit is cleared when the LSR register is read and there are no subsequent errors in the USART FIFO.	0	
	0	RBR contains no USART RX errors or FCR[0]=0.		
	1	USART RBR contains at least one USART RX error.		
TXERR		Tx Error. In smart card T=0 operation, this bit is set when the smart card has NACKed a transmitted character, one more than the number of times indicated by the TXRETRY field.	0	
-	-	Reserved	-	
	THRE TEMT RXFE	THRE 0 1 TEMT 0 1 RXFE 0 1 TXERR	THRE Transmitter Holding Register Empty. THRE is set immediately upon detection of an empty USART THR and is cleared on a THR write. THR contains valid data. THR is empty. TEMT Transmitter Empty. TEMT is set when both THR and TSR are empty; TEMT is cleared when either the TSR or the THR contain valid data. THR and/or the TSR contains valid data. THR and the TSR are empty. Error in RX FIFO. LSR[7] is set when a character with a RX error such as framing error, parity error or break interrupt, is loaded into the RBR. This bit is cleared when the LSR register is read and there are no subsequent errors in the USART FIFO. RBR contains no USART RX errors or FCR[0]=0. USART RBR contains at least one USART RX error. TXERR Tx Error. In smart card T=0 operation, this bit is set when the smart card has NACKed a transmitted character, one more than the number of times indicated by the TXRETRY field.	

8.5.10 USART Modem Status Register

The MSR is a read-only register that provides status information on USART input signals. Bit 0 is cleared when (after) this register is read.

Table 102: USART Modem Status Register (MSR - address 0x4000 8018) bit description

Bit	Symbol	Value	Description	Reset value
0	DCTS		Delta CTS. Set upon state change of input CTS. Cleared on an MSR read.	0
		0	No change detected on modem input, CTS.	
		1	State change detected on modem input, CTS.	
1	DDSR		Delta DSR. Set upon state change of input DSR. Cleared on an MSR read.	0
		0	No change detected on modem input, DSR.	
		1	State change detected on modem input, DSR.	
2	TERI		Trailing Edge RI. Set upon low to high transition of input RI. Cleared on an MSR read.	0
		0	No change detected on modem input, RI.	
		1	Low-to-high transition detected on RI.	

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 102: USART Modem Status Register (MSR - address 0x4000 8018) bit description

Bit	Symbol	Value	Description	Reset value
3	DDCD		Delta DCD. Set upon state change of input DCD. Cleared on an MSR read.	0
		0	No change detected on modem input, DCD.	
		1	State change detected on modem input, DCD.	
4	CTS	-	Clear To Send State. Complement of input signal CTS. This bit is connected to MCR[1] in modem loopback mode.	0
5	DSR	-	Data Set Ready State. Complement of input signal DSR. This bit is connected to MCR[0] in modem loopback mode.	0
6	RI	-	Ring Indicator State. Complement of input RI. This bit is connected to MCR[2] in modem loopback mode.	0
7	DCD	-	Data Carrier Detect State. Complement of input DCD. This bit is connected to MCR[3] in modem loopback mode.	0
31:8	-	-	Reserved, the value read from a reserved bit is not defined.	NA

8.5.11 USART Scratch Pad Register (SCR - 0x4000 801C)

The SCR has no effect on the USART operation. This register can be written and/or read at user's discretion. There is no provision in the interrupt interface that would indicate to the host that a read or write of the SCR has occurred.

Table 103. USART Scratch Pad Register (SCR - address 0x4000 801C) bit description

Bit	Symbol	Description	Reset Value
7:0	PAD	A readable, writable byte.	0x00
31:8	-	Reserved	-

8.5.12 USART Auto-baud Control Register (ACR - 0x4000 8020)

The USART Auto-baud Control Register (ACR) controls the process of measuring the incoming clock/data rate for baud rate generation, and can be read and written at the user's discretion.

Table 104. Auto-baud Control Register (ACR - address 0x4000 8020) bit description

Bit	Symbol	Value	Description	Reset value
0	START		This bit is automatically cleared after auto-baud completion.	0
		0	Auto-baud stop (auto-baud is not running).	
		1	Auto-baud start (auto-baud is running). Auto-baud run bit. This bit is automatically cleared after auto-baud completion.	
1	MODE		Auto-baud mode select bit.	0
		0	Mode 0.	
		1	Mode 1.	

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 104. Auto-baud Control Register (ACR - address 0x4000 8020) bit description

Bit	Symbol	Value	Description	Reset value	
2	AUTORESTART		Start mode	0	
		0	No restart		
			Restart in case of time-out (counter restarts at next USART Rx falling edge)		
7:3	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0	
8	ABEOINTCLR		End of auto-baud interrupt clear bit (write only accessible).	-	
		0	Writing a 0 has no impact.		
		1	Writing a 1 will clear the corresponding interrupt in the IIR.		
9	ABTOINTCLR	ABTOINTCLR		Auto-baud time-out interrupt clear bit (write only accessible).	0
		0	Writing a 0 has no impact.		
		1	Writing a 1 will clear the corresponding interrupt in the IIR.		
31:10	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0	

8.5.13 Auto-baud

The USART auto-baud function can be used to measure the incoming baud rate based on the "AT" protocol (Hayes command). If enabled the auto-baud feature will measure the bit time of the receive data stream and set the divisor latch registers DLM and DLL accordingly.

Auto-baud is started by setting the ACR Start bit. Auto-baud can be stopped by clearing the ACR Start bit. The Start bit will clear once auto-baud has finished and reading the bit will return the status of auto-baud (pending/finished).

Two auto-baud measuring modes are available which can be selected by the ACR Mode bit. In Mode 0 the baud rate is measured on two subsequent falling edges of the USART Rx pin (the falling edge of the start bit and the falling edge of the least significant bit). In Mode 1 the baud rate is measured between the falling edge and the subsequent rising edge of the USART Rx pin (the length of the start bit).

The ACR AutoRestart bit can be used to automatically restart baud rate measurement if a time-out occurs (the rate measurement counter overflows). If this bit is set, the rate measurement will restart at the next falling edge of the USART Rx pin.

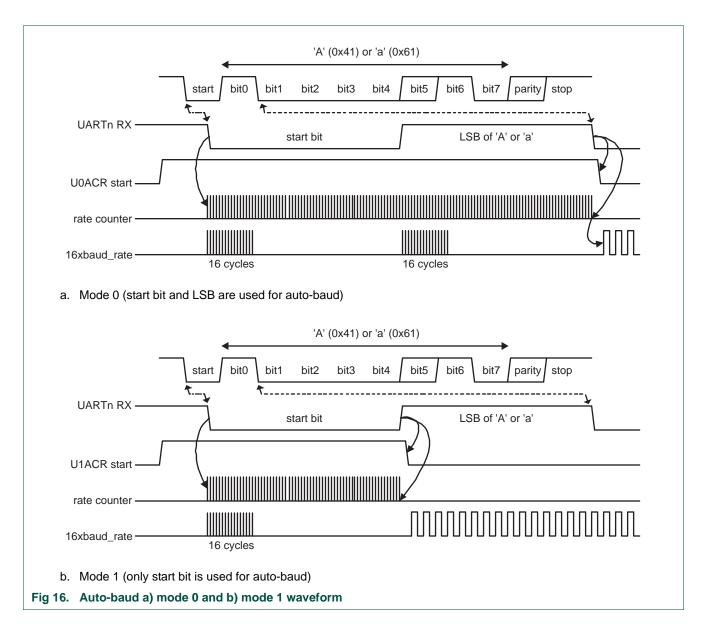
The auto-baud function can generate two interrupts.

- The IIR ABTOInt interrupt will get set if the interrupt is enabled (IER ABToIntEn is set and the auto-baud rate measurement counter overflows).
- The IIR ABEOInt interrupt will get set if the interrupt is enabled (IER ABEOIntEn is set and the auto-baud has completed successfully).

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

The auto-baud interrupts have to be cleared by setting the corresponding ACR ABTOIntCIr and ABEOIntEn bits.

The fractional baud rate generator must be disabled (DIVADDVAL = 0) during auto-baud. Also, when auto-baud is used, any write to DLM and DLL registers should be done before ACR register write. The minimum and the maximum baud rates supported by USART are a function of UART PCLK and the number of data bits, stop bits and parity bits.


$$ratemin = \frac{2 \times PCLK}{16 \times 2^{15}} \le UART_{baudrate} \le \frac{PCLK}{16 \times (2 + databits + paritybits + stopbits)} = ratemax$$
 (1)

8.5.14 Auto-baud modes

When the software is expecting an "AT" command, it configures the USART with the expected character format and sets the ACR Start bit. The initial values in the divisor latches DLM and DLM don't care. Because of the "A" or "a" ASCII coding ("A" = 0x41, "a" = 0x61), the USART Rx pin sensed start bit and the LSB of the expected character are delimited by two falling edges. When the ACR Start bit is set, the auto-baud protocol will execute the following phases:

- On ACR Start bit setting, the baud rate measurement counter is reset and the USART RSR is reset. The RSR baud rate is switched to the highest rate.
- 2. A falling edge on USART Rx pin triggers the beginning of the start bit. The rate measuring counter will start counting UART_PCLK cycles.
- During the receipt of the start bit, 16 pulses are generated on the RSR baud input with the frequency of the USART input clock, guaranteeing the start bit is stored in the RSR.
- During the receipt of the start bit (and the character LSB for Mode = 0), the rate counter will continue incrementing with the pre-scaled USART input clock (UART_PCLK).
- 5. If Mode = 0, the rate counter will stop on next falling edge of the USART Rx pin. If Mode = 1, the rate counter will stop on the next rising edge of the USART Rx pin.
- The rate counter is loaded into DLM/DLL and the baud rate will be switched to normal operation. After setting the DLM/DLL, the end of auto-baud interrupt IIR ABEOInt will be set, if enabled. The RSR will now continue receiving the remaining bits of the character.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

8.5.15 IrDA Control Register (ICR - 0x4000 8024)

The IrDA Control Register enables and configures the IrDA mode. The value of the ICR should not be changed while transmitting or receiving data, or data loss or corruption may occur.

Table 105: IrDA Control Register (ICR - 0x4000 8024) bit description

		•	,	
Bit	Symbol	Value	Description	Reset value
0	IRDAEN		IrDA mode enable	0
		0	IrDA mode on USART is disabled, USART acts as a standard USART.	
		1	IrDA mode on USARTn is enabled.	
1	IRDAINV		Serial input inverter	0
		0	The serial input is not inverted.	

UM10527

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 105: IrDA Control Register (ICR - 0x4000 8024) bit description

			, , , , , , , , , , , , , , , , , , , ,	
Bit	Symbol	Value	Description	Reset value
		1	The serial input is inverted. This has no effect on the serial output.	
2	FIXPULSEEN		IrDA fixed pulse width mode.	0
		0	IrDA fixed pulse width mode disabled.	
		1	IrDA fixed pulse width mode enabled.	
5:3	PULSEDIV		Configures the pulse width when FixPulseEn = 1.	0
		0x0	3 / (16 × baud rate)	
		0x1	2 × T _{PCLK}	
		0x2	4 × T _{PCLK}	
		0x3	8 × T _{PCLK}	
		0x4	16 × T _{PCLK}	
		0x5	32 × T _{PCLK}	
		0x6	64 × T _{PCLK}	
		0x7	128 × T _{PCLK}	
31:6	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

The PulseDiv bits in the ICR are used to select the pulse width when the fixed pulse width mode is used in IrDA mode (IrDAEn = 1 and FixPulseEn = 1). The value of these bits should be set so that the resulting pulse width is at least 1.63 μ s. Table 106 shows the possible pulse widths.

Table 106: IrDA Pulse Width

FixPulseEn	PulseDiv	IrDA Transmitter Pulse width (μs)
0	Х	3 / (16 × baud rate)
1	0	2 × T _{PCLK}
1	1	4 × T _{PCLK}
1	2	8 × T _{PCLK}
1	3	16 × T _{PCLK}
1	4	$32 \times T_{PCLK}$
1	5	64 × T _{PCLK}
1	6	128 × T _{PCLK}
1	7	256 × T _{PCLK}

8.5.16 USART Fractional Divider Register (FDR - 0x4000 8028)

The USART Fractional Divider Register (FDR) controls the clock pre-scaler for the baud rate generation and can be read and written at the user's discretion. This pre-scaler takes the APB clock and generates an output clock according to the specified fractional requirements.

Important: If the fractional divider is active (DIVADDVAL > 0) and DLM = 0, the value of the DLL register must be 3 or greater.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 107. USART Fractional Divider Register (FDR - address 0x4000 8028) bit description

Bit	Function	Description	Reset value
3:0	DIVADDVAL	Baud rate generation pre-scaler divisor value. If this field is 0, fractional baud rate generator will not impact the USART baud rate.	0
7:4	MULVAL	Baud rate pre-scaler multiplier value. This field must be greater or equal 1 for USART to operate properly, regardless of whether the fractional baud rate generator is used or not.	1
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0

This register controls the clock pre-scaler for the baud rate generation. The reset value of the register keeps the fractional capabilities of USART disabled making sure that USART is fully software and hardware compatible with USARTs not equipped with this feature.

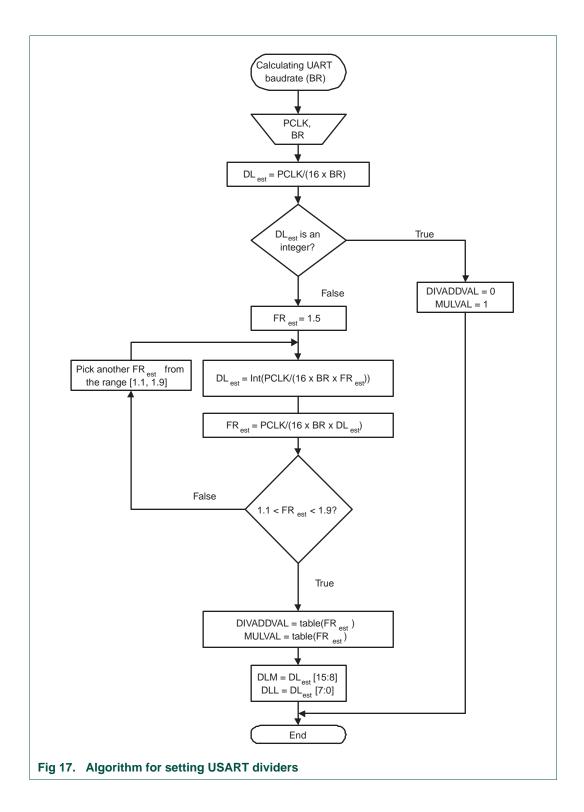
The USART baud rate can be calculated as:

$$UART_{baudrate} = \frac{PCLK}{16 \times (256 \times U0DLM + U0DLL) \times \left(1 + \frac{DivAddVal}{MulVal}\right)}$$
(2)

Where UART_PCLK is the peripheral clock, DLM and DLL are the standard USART baud rate divider registers, and DIVADDVAL and MULVAL are USART fractional baud rate generator specific parameters.

The value of MULVAL and DIVADDVAL should comply to the following conditions:

- 1. $1 \le MULVAL \le 15$
- 2. $0 \le DIVADDVAL \le 14$
- 3. DIVADDVAL< MULVAL


The value of the FDR should not be modified while transmitting/receiving data or data may be lost or corrupted.

If the FDR register value does not comply to these two requests, then the fractional divider output is undefined. If DIVADDVAL is zero then the fractional divider is disabled, and the clock will not be divided.

8.5.16.1 Baud rate calculation

The USART can operate with or without using the Fractional Divider. In real-life applications it is likely that the desired baud rate can be achieved using several different Fractional Divider settings. The following algorithm illustrates one way of finding a set of DLM, DLL, MULVAL, and DIVADDVAL values. Such a set of parameters yields a baud rate with a relative error of less than 1.1% from the desired one.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal	FR	DivAddVal/ MulVal
1.000	0/1	1.250	1/4	1.500	1/2	1.750	3/4
1.067	1/15	1.267	4/15	1.533	8/15	1.769	10/13
1.071	1/14	1.273	3/11	1.538	7/13	1.778	7/9
1.077	1/13	1.286	2/7	1.545	6/11	1.786	11/14
1.083	1/12	1.300	3/10	1.556	5/9	1.800	4/5
1.091	1/11	1.308	4/13	1.571	4/7	1.818	9/11
1.100	1/10	1.333	1/3	1.583	7/12	1.833	5/6
1.111	1/9	1.357	5/14	1.600	3/5	1.846	11/13
1.125	1/8	1.364	4/11	1.615	8/13	1.857	6/7
1.133	2/15	1.375	3/8	1.625	5/8	1.867	13/15
1.143	1/7	1.385	5/13	1.636	7/11	1.875	7/8
1.154	2/13	1.400	2/5	1.643	9/14	1.889	8/9
1.167	1/6	1.417	5/12	1.667	2/3	1.900	9/10
1.182	2/11	1.429	3/7	1.692	9/13	1.909	10/11
1.200	1/5	1.444	4/9	1.700	7/10	1.917	11/12
1.214	3/14	1.455	5/11	1.714	5/7	1.923	12/13
1.222	2/9	1.462	6/13	1.727	8/11	1.929	13/14
1.231	3/13	1.467	7/15	1.733	11/15	1.933	14/15

Table 108. Fractional Divider setting look-up table

8.5.16.1.1 Example 1: UART_PCLK = 14.7456 MHz, BR = 9600

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 14.7456 \text{ MHz} / (16 \text{ x 9600}) = 96$. Since this DL_{est} is an integer number, DIVADDVAL = 0, MULVAL = 1, DLM = 0, and DLL = 96.

8.5.16.1.2 Example 2: UART_PCLK = 12.0 MHz, BR = 115200

According to the provided algorithm $DL_{est} = PCLK/(16 \text{ x BR}) = 12 \text{ MHz} / (16 \text{ x } 115200) = 6.51$. This DL_{est} is not an integer number and the next step is to estimate the FR parameter. Using an initial estimate of $FR_{est} = 1.5$ a new $DL_{est} = 4$ is calculated and FR_{est} is recalculated as $FR_{est} = 1.628$. Since FRest = 1.628 is within the specified range of 1.1 and 1.9, DIVADDVAL and MULVAL values can be obtained from the attached look-up table.

The closest value for FRest = 1.628 in the look-up <u>Table 108</u> is FR = 1.625. It is equivalent to DIVADDVAL = 5 and MULVAL = 8.

Based on these findings, the suggested USART setup would be: DLM = 0, DLL = 4, DIVADDVAL = 5, and MULVAL = 8. According to Equation 2, the USART's baud rate is 115384. This rate has a relative error of 0.16% from the originally specified 115200.

8.5.17 USART Oversampling Register (OSR - 0x4000 802C)

In most applications, the USART samples received data 16 times in each nominal bit time, and sends bits that are 16 input clocks wide. This register allows software to control the ratio between the input clock and bit clock. This is required for smart card mode, and provides an alternative to fractional division for other modes.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 109. USART Oversampling Register (OSR - address 0x4000 802C) bit description

Bit	Symbol	Description	Reset value
0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
3:1	OSFRAC	Fractional part of the oversampling ratio, in units of $1/8$ th of an input clock period. (001 = 0.125,, 111 = 0.875)	0
7:4	OSINT	Integer part of the oversampling ratio, minus 1. The reset values equate to the normal operating mode of 16 input clocks per bit time.	0xF
14:8	FDINT	In Smart Card mode, these bits act as a more-significant extension of the OSint field, allowing an oversampling ratio up to 2048 as required by ISO7816-3. In Smart Card mode, bits 14:4 should initially be set to 371, yielding an oversampling ratio of 372.	0
31:15	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Example: For a baud rate of 3.25Mbps with a 24 MHz USART clock frequency, the ideal oversampling ratio is 24/3.25 or 7.3846. Setting OSInt to 0110 for 7 clocks/bit and OSFrac to 011 for 0.375 clocks/bit, results in an oversampling ratio of 7.375.

In smart card mode, OSInt is extended by FDInt. This extends the possible oversampling to 2048, as required to support ISO 7816-3. Note that this value can be exceeded when D<0, but this is not supported by the USART. When smart card mode is enabled, the initial value of OSInt and FDInt should be programmed as "00101110011" (372 minus one).

8.5.18 USART Transmit Enable Register

This register enables implementation of software flow control. When TXEN = 1, the USART transmitter will keep sending data as long as it is available. As soon as TXEN becomes 0, USART transmission will stop at the end of the current character.

Although <u>Table 110</u> describes how to use TXEN bit in order to achieve hardware flow control, if the signals are available it is better to use the USART hardware-implemented flow-control features, and use TXEN only for software flow control.

Table 110. USART Transmit Enable Register (TER - address 0x4000 8030) bit description

Bit	Symbol	Description	Reset Value
6:0	-	Reserved	-
7	TXEN	When this bit is 1, as it is after a Reset, data written to the THR is output on the TxD pin as soon as any preceding data has been sent. If this bit cleared to 0 while a character is being sent, the transmission of that character is completed, but no further characters are sent until this bit is set again. In other words, a 0 in this bit blocks the transfer of characters from the THR or Tx FIFO into the transmit shift register. Software can clear this bit when it detects that a hardware-handshaking Tx-permit signal (typically CTS) has gone false, or with software handshaking when it receives an XOFF character (DC3). Software can set this bit again when it detects that the Tx-permit signal has gone true, or when it receives an XON (DC1) character.	1
31:1	-	Reserved	-

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

8.5.19 Smart Card Interface Control register (SCICTRL - 0x4000 8048)

This register allows the USART to be used in asynchronous smart card applications.

Table 111. Smart Card Interface Control register (SCICTRL - address 0x4000 8048) bit description

чезоприон				
Bit	Symbol	Value	Description	Reset value
0	SCIEN		Smart Card Interface Enable.	0
		0	Smart card interface disabled.	
		1	Asynchronous half duplex smart card interface is enabled.	
1	NACKDIS		NACK response disable. Only applicable in T=0.	0
		0	A NACK response is enabled.	
		1	A NACK response is inhibited.	
2	PROTSEL		Protocol selection as defined in the ISO7816-3 standard.	0
	0	T = 0		
		1	T = 1	
7:5	TXRETRY		When the protocol selection T bit (above) is 0, the field controls the maximum number of retransmissions that the USART will attempt if the remote device signals NACK. When NACK has occurred this number of times plus one, the Tx Error bit in the LSR is set, an interrupt is requested if enabled, and the USART is locked until the FIFO is cleared.	-
15:8	XTRAGUARD		When the protocol selection T bit (above) is 0, this field indicates the number of bit times (ETUs) by which the guard time after a character transmitted by the USART should exceed the nominal 2 bit times. 0xFF in this field may indicate that there is just a single bit after a character and 11 bit times/character	
31:16	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

8.5.19.1 Smart Card Connection

When the SCIEN bit in the SCICTRL register is set as described above, the USART provides bidirectional serial data on the TXD pin. No RXD pin is used when SCIEN is 1. If a USART SCLK function is enabled in the I/O Configuration block, a serial clock is output on the pin: use of such a clock is optional for smart cards. Software must use timers to implement character and block waiting times (no hardware support via trigger signals is provided on the LPC11Axx). GPIO pins can be used to control the smart card reset and power pins.

8.5.19.2 Smart Card Setup

The following must be set up in smart card applications:

- If necessary, program PRESETCTRL (<u>Section 3.5.2</u>) so that the USART is (reset? then) not continuously reset.
- Program one IOCON register to enable a USART TXD function.

UM10527

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

- If the smart card to be communicated with requires (or may require) a clock, program one IOCON register for the USART SCLK function. The USART will use it as an output.
- Program UARTCLKDIV (Section 3.5.17) for an initial USART frequency of 3.58 MHz.
- Program the OSR (Section 8.5.17) for 372x oversampling.
- If necessary, program the DLM and DLL (<u>Section 8.5.3</u>) to 00 and 01 respectively, to pass the USART clock through without division.
- Program the LCR (<u>Section 8.5.8</u>) for 8-bit characters, parity enabled, even parity.
- Program the GPIO signals associated with the smart card so that (in this order):
 - Reset is low.
 - VCC is provided to the card (GPIO pins do not have the required 200 mA drive).
 - VPP (if provided to the card) is at "idle" state.
- Program SCICTRL (<u>Section 8.5.19</u>) to enable the smart card feature with the desired options.
- Set up one or more timer(s) to provide timing as needed for ISO 7816 startup.
- Program SYSAHBCLKCTRL (Section 3.5.15) to enable the USART clock.

Thereafter, software should monitor the USART and timer status so as to interact with the smart card as described in ISO 7816 3.2.b and subsequently.

8.5.20 USART RS485 Control register

The RS485CTRL register controls the configuration of the USART in RS-485/EIA-485 mode.

Table 112. USART RS485 Control register (RS485CTRL - address 0x4000 804C) bit description

Bit	Symbol	Value	Description	Reset value
0	NMMEN		NMM enable.	0
		0	RS-485/EIA-485 Normal Multidrop Mode (NMM) is disabled.	
		1	RS-485/EIA-485 Normal Multidrop Mode (NMM) is enabled. In this mode, an address is detected when a received byte causes the USART to set the parity error and generate an interrupt.	
1	RXDIS		Receiver enable.	0
		0 The red	The receiver is enabled.	
		1	The receiver is disabled.	
2	AADEN		AAD enable.	0
		O Auto Address Detect (AAD) is disabled.	Auto Address Detect (AAD) is disabled.	
		1	Auto Address Detect (AAD) is enabled.	
3	SEL		Select direction control pin	0
		0 If direction control is enabled (bit DCTRL = 1), p RTS is used for direction control.	If direction control is enabled (bit DCTRL = 1), pin \overline{RTS} is used for direction control.	
		1	$\frac{\text{If direction control is enabled (bit DCTRL = 1), pin}}{\text{DTR}} \text{ is used for direction control.}$	

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 112. USART RS485 Control register (RS485CTRL - address 0x4000 804C) bit description ...continued

Bit	Symbol	Value	Description	Reset value
4	DCTRL		Auto direction control enable.	0
		0	Disable Auto Direction Control.	
		1	Enable Auto Direction Control.	
5	OINV		Polarity control. This bit reverses the polarity of the direction control signal on the RTS (or DTR) pin.	0
		0	The direction control pin will be driven to logic 0 when the transmitter has data to be sent. It will be driven to logic 1 after the last bit of data has been transmitted.	
		1	The direction control pin will be driven to logic 1 when the transmitter has data to be sent. It will be driven to logic 0 after the last bit of data has been transmitted.	
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

8.5.21 USART RS-485 Address Match register

The RS485ADRMATCH register contains the address match value for RS-485/EIA-485 mode.

Table 113. USART RS-485 Address Match register (RS485ADRMATCH - address 0x4000 8050) bit description

Bit	Symbol	Description	Reset value
7:0	ADRMATCH	Contains the address match value.	0x00
31:8	-	Reserved	-

8.5.22 USART RS-485 Delay value register

The user may program the 8-bit RS485DLY register with a delay between the last stop bit leaving the TXFIFO and the de-assertion of RTS (or DTR). This delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be programmed.

Table 114. USART RS-485 Delay value register (RS485DLY - address 0x4000 80454) bit description

Bit	Symbol	Description	Reset value
7:0	DLY	Contains the direction control (RTS or DTR) delay value. This register works in conjunction with an 8-bit counter.	0x00
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

8.5.23 RS-485/EIA-485 modes of operation

The RS-485/EIA-485 feature allows the USART to be configured as an addressable slave. The addressable slave is one of multiple slaves controlled by a single master.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

The USART master transmitter will identify an address character by setting the parity (9th) bit to '1'. For data characters, the parity bit is set to '0'.

Each USART slave receiver can be assigned a unique address. The slave can be programmed to either manually or automatically reject data following an address which is not theirs.

RS-485/EIA-485 Normal Multidrop Mode

Setting the RS485CTRL bit 0 enables this mode. In this mode, an address is detected when a received byte causes the USART to set the parity error and generate an interrupt.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received data bytes will be ignored and will not be stored in the RXFIFO. When an address byte is detected (parity bit = '1') it will be placed into the RXFIFO and an Rx Data Ready Interrupt will be generated. The processor can then read the address byte and decide whether or not to enable the receiver to accept the following data.

While the receiver is enabled (RS485CTRL bit 1 ='0'), all received bytes will be accepted and stored in the RXFIFO regardless of whether they are data or address. When an address character is received a parity error interrupt will be generated and the processor can decide whether or not to disable the receiver.

RS-485/EIA-485 Auto Address Detection (AAD) mode

When both RS485CTRL register bits 0 (9-bit mode enable) and 2 (AAD mode enable) are set, the USART is in auto address detect mode.

In this mode, the receiver will compare any address byte received (parity = '1') to the 8-bit value programmed into the RS485ADRMATCH register.

If the receiver is disabled (RS485CTRL bit 1 = '1'), any received byte will be discarded if it is either a data byte OR an address byte which fails to match the RS485ADRMATCH value.

When a matching address character is detected it will be pushed onto the RXFIFO along with the parity bit, and the receiver will be automatically enabled (RS485CTRL bit 1 will be cleared by hardware). The receiver will also generate an Rx Data Ready Interrupt.

While the receiver is enabled (RS485CTRL bit 1 = '0'), all bytes received will be accepted and stored in the RXFIFO until an address byte which does not match the RS485ADRMATCH value is received. When this occurs, the receiver will be automatically disabled in hardware (RS485CTRL bit 1 will be set), The received non-matching address character will not be stored in the RXFIFO.

RS-485/EIA-485 Auto Direction Control

RS485/EIA-485 mode includes the option of allowing the transmitter to automatically control the state of the DIR pin as a direction control output signal.

Setting RS485CTRL bit 4 = '1' enables this feature.

Keep RS485CTRL bit 3 zero so that direction control, if enabled, will use the RTS pin.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

When Auto Direction Control is enabled, the selected pin will be asserted (driven LOW) when the CPU writes data into the TXFIFO. The pin will be de-asserted (driven HIGH) once the last bit of data has been transmitted. See bits 4 and 5 in the RS485CTRL register.

The RS485CTRL bit 4 takes precedence over all other mechanisms controlling the direction control pin with the exception of loopback mode.

RS485/EIA-485 driver delay time

The driver delay time is the delay between the last stop bit leaving the TXFIFO and the de-assertion of RTS. This delay time can be programmed in the 8-bit RS485DLY register. The delay time is in periods of the baud clock. Any delay time from 0 to 255 bit times may be used.

RS485/EIA-485 output inversion

The polarity of the direction control signal on the RTS (or DTR) pins can be reversed by programming bit 5 in the RS485CTRL register. When this bit is set, the direction control pin will be driven to logic 1 when the transmitter has data waiting to be sent. The direction control pin will be driven to logic 0 after the last bit of data has been transmitted.

8.5.24 USART Synchronous mode control register

SYNCCTRL register controls the synchronous mode. When this mode is in effect, the USART generates or receives a bit clock on the SCLK pin and applies it to the transmit and receive shift registers. Synchronous mode should not be used with smart card mode.

Table 115. USART Synchronous mode control register (SYNCCTRL - address 0x4000 8058) bit description

Bit	Symbol	Value	Description	Reset value
0	SYNC		Enables synchronous mode.	0
		0	Disabled	
		1	Enabled	
1	1 CSRC		Clock source select.	0
			Synchronous slave mode (SCLK in)	
		1	Synchronous master mode (SCLK out)	
2	FES	Falling edge sampling. RxD is sampled on the rising edge of SCLK		0
		1	RxD is sampled on the falling edge of SCLK	
3	TSBYPASS		Transmit synchronization register bypass.	0
		0	The input clock is synchronized prior to being used in clock edge detection logic.	
		1	The input clock is not synchronized prior to being used in clock edge detection logic. This allows for a high er input clock rate at the expense of potential metastability.	

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

Table 115. USART Synchronous mode control register (SYNCCTRL - address 0x4000 8058) bit description

Bit	Symbol	Value	Description	Reset value		
4	CSCEN		Continuous master clock enable (used only when CSRC is 1)	0		
		0	SCLK cycles only when characters are being sent on TxD			
		1	SCLK runs continuously (characters can be received on RxD independently from transmission on TxD)			
5	SSDIS		Start/stop bits	0		
			O Send start and stop bits as in other modes.			
		1	Do not send start/stop bits.			
6	CCCLR		Continuous clock clear			
		0 CSCEN is under software control.				
		1	Hardware clears CSCEN after each character is received.			
31:6	-		Reserved. The value read from a reserved bit is not defined.	NA		

After reset, synchronous mode is disabled. Synchronous mode is enabled by setting the SYNC bit. When SYNC is 1, the USART operates as follows:

- The CSRC bit controls whether the USART sends (master mode) or receives (slave mode) a serial bit clock on the SCLK pin.
- When CSRC is 1 selecting master mode, the CSCEN bit selects whether the USART produces clocks on SCLK continuously (CSCEN=1) or only when transmit data is being sent on TxD (CSCEN=0).
- 3. The SSDIS bit controls whether start and stop bits are used. When SSDIS is 0, the USART sends and samples for start and stop bits as in other modes. When SSDIS is 1, the USART neither sends nor samples for start or stop bits, and each falling edge on SCLK samples a data bit on RxD into the receive shift register, as well as shifting the transmit shift register.

The rest of this section provides further details of operation when SYNC is 1.

Data changes on TxD from falling edges on SCLK. When SSDIS is 0, the FES bit controls whether the USART samples serial data on RxD on rising edges or falling edges on SCLK. When SSDIS is 1, the USART ignores FES and always samples RxD on falling edges on SCLK.

The combination SYNC=1, CSRC=1, CSCEN=1, and SSDIS=1 is a difficult operating mode, because SCLK applies to both directions of data flow and there is no defined mechanism to signal the receivers when valid data is present on TxD or RxD.

Lacking such a mechanism, SSDIS=1 can be used with CSCEN=0 or CSRC=0 in a mode similar to the SPI protocol, in which characters are (at least conceptually) "exchanged" between the USART and remote device for each set of 8 clock cycles on SCLK. Such operation can be called full-duplex, but the same hardware mode can be used in a

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

half-duplex way under control of a higher-layer protocol, in which the source of SCLK toggles it in groups of N cycles whenever data is to be sent in either direction. (N being the number of bits/character.)

When the LPC11Axx USART is the clock source (CSRC=1), such half-duplex operation can lead to the rather artificial-seeming requirement of writing a dummy character to the Transmitter Holding Register in order to generate 8 clocks so that a character can be received. The CCCLR bit provides a more natural way of programming half-duplex reception. When the higher-layer protocol dictates that the LPC11Axx USART should receive a character, software should write the SYNCCTRL register with CSCEN=1 and CCCLR=1. After the USART has sent N clock cycles and thus received a character, it clears the CSCEN bit. If more characters need to be received thereafter, software can repeat setting CSCEN and CCCLR.

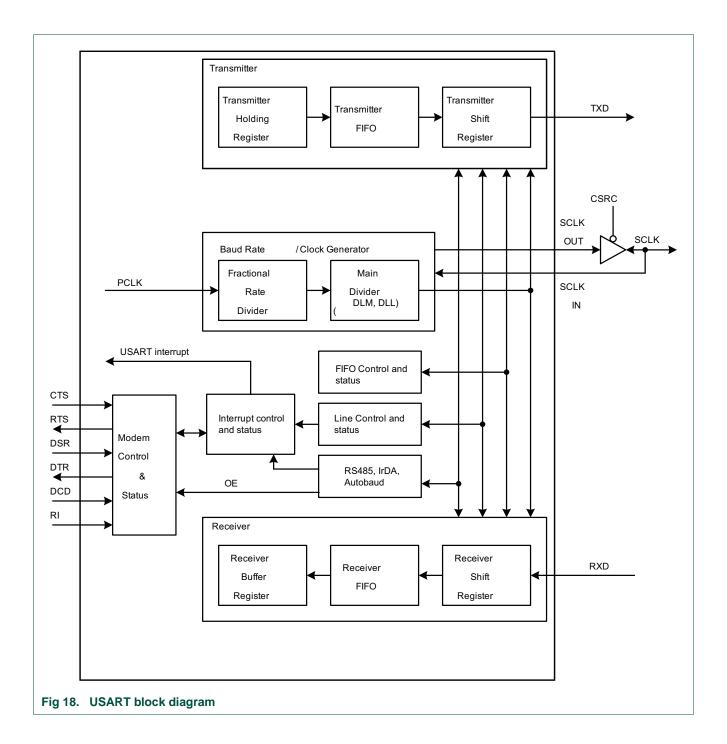
Aside from such half-duplex operation, the primary use of CSCEN=1 is with SSDIS=0, so that start bits indicate the transmission of each character in each direction.

8.6 Architecture

The architecture of the USART is shown below in the block diagram.

The APB interface provides a communications link between the CPU or host and the USART.

The USART receiver block, RX, monitors the serial input line, RXD, for valid input. The USART RX Shift Register (RSR) accepts valid characters via RXD. After a valid character is assembled in the RSR, it is passed to the USART RX Buffer Register FIFO to await access by the CPU or host via the generic host interface.


The USART transmitter block, TX, accepts data written by the CPU or host and buffers the data in the USART TX Holding Register FIFO (THR). The USART TX Shift Register (TSR) reads the data stored in the THR and assembles the data to transmit via the serial output pin, TXD1.

The USART Baud Rate Generator block, BRG, generates the timing enables used by the USART TX block. The BRG clock input source is UART_PCLK. The main clock is divided down per the divisor specified in the DLL and DLM registers. This divided down clock is a 16x oversample clock, NBAUDOUT.

The interrupt interface contains registers IER and IIR. The interrupt interface receives several one clock wide enables from the TX and RX blocks.

Status information from the TX and RX is stored in the LSR. Control information for the TX and RX is stored in the LCR.

Chapter 8: LPC11Axx Universal Synchronous/Asynchronous Receiver/

UM10527

Chapter 9: LPC11Axx I2C-bus interface

Rev. 5 — 21 January 2013

User manual

9.1 How to read this chapter

The I²C-bus block is identical for all LPC11Axx parts.

9.2 Basic configuration

The I²C-bus interface is configured using the following registers:

- 1. Primary I2C pins (PIO0_2 and PIO0_3): Configure the primary I2C pins in the IOCONFIG register block (Table 82).
- 2. Alternate I2C pins: Configure the I2C pin functions and the I2C mode for the alternate I2C pins in the IOCONFIG register block (Table 80).
- 3. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 5 (Table 20).

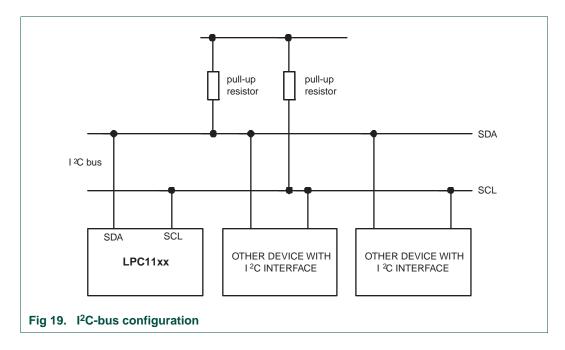
9.3 Features

- Standard I²C-compliant bus interfaces may be configured as Master, Slave, or Master/Slave.
- Arbitration is handled between simultaneously transmitting masters without corruption of serial data on the bus.
- Programmable clock allows adjustment of I²C transfer rates.
- Data transfer is bidirectional between masters and slaves.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization is used as a handshake mechanism to suspend and resume serial transfer.
- Supports Fast-mode Plus.
- Optional recognition of up to four distinct slave addresses.
- Monitor mode allows observing all I²C-bus traffic, regardless of slave address.
- I²C-bus can be used for test and diagnostic purposes.
- Two pins include standard I²C-compliant transceivers.
- Clock and data functions each have 3 other alternative pins with pseudo-open-drain drivers, maximizing the possibility of combining I²C with other necessary functions.

9.4 Applications

Interfaces to external I²C standard parts, such as serial RAMs, LCDs, tone generators, other microcontrollers, etc.

Chapter 9: LPC11Axx I2C-bus interface


9.5 General description

A typical I²C-bus configuration is shown in <u>Figure 19</u>. Depending on the state of the direction bit (R/W), two types of data transfers are possible on the I²C-bus:

- Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.
- Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The slave returns an acknowledge bit. Next the data bytes are transmitted from the slave to the master. The master returns an acknowledge bit after each received byte other than the last byte. At the end of the last received byte, a "not acknowledge" is returned. The master device generates the serial clock pulses and START and STOP conditions. A transfer ends with a STOP condition or a Repeated START condition. The I²C bus is released after a STOP condition but not for a Repeated START (which begins another serial transfer).

The I²C interface is byte oriented and has four operating modes: master transmitter mode, master receiver mode, slave transmitter mode and slave receiver mode.

When the I^2C is connected via the "primary" pins shown in <u>Table 116</u>, the electrical characteristics are fully compliant with the I^2C specification, including the ability to power-down the LPC11Axx without interfering with other devices on the I^2C -bus. (This is not true of the alternate pins.)

9.5.1 I²C Fast-mode Plus

Fast-Mode Plus supports transfer at up to 1 Mbit/sec. In order to use Fast-Mode Plus, the primary I²C pins must be used and properly configured in the IOCONFIG register block.

UM10527

Chapter 9: LPC11Axx I2C-bus interface

9.6 Pin description

If the Primary pins are used for I²C, the HS and HD fields of their I/O Configuration registers (<u>Table 82</u> and <u>Table 83</u>) should be programmed as described in <u>Section 6.3.6</u>. If alternate pins are used, the OD bits of their I/O Configuration registers (<u>Table 80</u> and <u>Table 84</u>) should be set, and optionally internal pull-ups can be selected in the MODE fields. Using internal pull-ups may result in rise times that aren't compatible with the desired speed, in which case external resistors can be used with the MODE fields set to "Inactive" state.

Table 116. I²C-bus pin description

Function	Primary Pin	Alternate Pins	Туре	Description
SCL	PIO0_2	PIO0_12, PIO0_16, PIO0_24	Input/Output	I ² C Serial Clock
SDA	PIO0_3	PIO0_13, PIO0_15, PIO0_25	Input/Output	I ² C Serial Data

9.6.1 External Pull-ups

External pull-up resistors on alternate pins should not be connected to a voltage higher than V_{DD}. This restriction does not apply to the primary pins.

9.7 Register description

Table 117. Register overview: I²C (base address 0x4000 0000)

Name	Access	Address offset	Description	Reset value[1]
CONSET	R/W	0x000	I2C Control Set Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is set. Writing a zero has no effect on the corresponding bit in the I ² C control register.	0x00
STAT	RO	0x004	I2C Status Register. During I ² C operation, this register provides detailed status codes that allow software to determine the next action needed.	0xF8
DAT	R/W	0x008	I2C Data Register. During master or slave transmit mode, data to be transmitted is written to this register. During master or slave receive mode, data that has been received may be read from this register.	0x00
ADR0	R/W	0x00C	I2C Slave Address Register 0. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00
SCLH	R/W	0x010	SCH Duty Cycle Register High Half Word. Determines the high time of the I ² C clock.	0x04
SCLL	R/W	0x014	SCL Duty Cycle Register Low Half Word. Determines the low time of the I ² C clock. SCLL and SCLH together determine the clock frequency generated by an I ² C master and certain times used in slave mode.	0x04
CONCLR	WO	0x018	I2C Control Clear Register. When a one is written to a bit of this register, the corresponding bit in the I ² C control register is cleared. Writing a zero has no effect on the corresponding bit in the I ² C control register.	NA
MMCTRL	R/W	0x01C	Monitor mode control register.	0x00

Chapter 9: LPC11Axx I2C-bus interface

Table 117. Register overview: I²C (base address 0x4000 0000) ...continued

	-	•	•			
Name	Access	Address offset	Description	Reset value[1]		
ADR1	R/W	0x020	I2C Slave Address Register 1. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00		
ADR2	R/W	0x024	I2C Slave Address Register 2. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00		
ADR3	R/W	0x028	I2C Slave Address Register 3. Contains the 7-bit slave address for operation of the I ² C interface in slave mode, and is not used in master mode. The least significant bit determines whether a slave responds to the General Call address.	0x00		
DATA_ BUFFER	RO	0x02C	Data buffer register. The contents of the 8 MSBs of the DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus.			
MASK0	R/W	0x030	I2C Slave address mask register 0 . This mask register is associated with ADR0 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00		
MASK1	R/W	0x034	I2C Slave address mask register 1 . This mask register is associated with ADR1 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00		
MASK2	R/W	0x038	I2C Slave address mask register 2 . This mask register is associated with ADR2 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00		
MASK3	R/W	0x03C	I2C Slave address mask register 3 . This mask register is associated with ADR3 to determine an address match. The mask register has no effect when comparing to the General Call address ('0000000').	0x00		

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

9.7.1 I²C Control Set register (CONSET)

The CONSET register controls setting of bits in the CON register that controls operation of the I^2C interface. Writing a one to a bit of this register causes the corresponding bit in the I^2C control register to be set. Writing a zero has no effect.

Table 118. I²C Control Set register (CONSET - address 0x4000 0000) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AA	Assert acknowledge flag.	
3	SI	I ² C interrupt flag.	0
4	STO	STOP flag.	0
5	STA	START flag.	0
6	I2EN	I ² C interface enable.	0
7	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 9: LPC11Axx I2C-bus interface

I2EN I²C Interface Enable. When I2EN is 1, the I²C interface is enabled. I2EN can be cleared by writing 1 to the I2ENC bit in the CONCLR register. When I2EN is 0, the I²C interface is disabled.

When I2EN is "0", the SDA and SCL input signals are ignored, the I²C block is in the "not addressed" slave state, and the STO bit is forced to "0".

I2EN should not be used to temporarily release the I^2C -bus since, when I2EN is reset, the I^2C -bus status is lost. The AA flag should be used instead.

STA is the START flag. Setting this bit causes the I²C interface to enter master mode and transmit a START condition or transmit a Repeated START condition if it is already in master mode.

When STA is 1 and the I²C interface is not already in master mode, it enters master mode, checks the bus and generates a START condition if the bus is free. If the bus is not free, it waits for a STOP condition (which will free the bus) and generates a START condition after a delay of a half clock period of the internal clock generator. If the I²C interface is already in master mode and data has been transmitted or received, it transmits a Repeated START condition. STA may be set at any time, including when the I²C interface is in an addressed slave mode.

STA can be cleared by writing 1 to the STAC bit in the CONCLR register. When STA is 0, no START condition or Repeated START condition will be generated.

If STA and STO are both set, then a STOP condition is transmitted on the I^2C -bus if it the interface is in master mode, and transmits a START condition thereafter. If the I^2C interface is in slave mode, an internal STOP condition is generated, but is not transmitted on the bus.

STO is the STOP flag. Setting this bit causes the I²C interface to transmit a STOP condition in master mode, or recover from an error condition in slave mode. When STO is 1 in master mode, a STOP condition is transmitted on the I²C-bus. When the bus detects the STOP condition, STO is cleared automatically.

In slave mode, setting this bit can recover from an error condition. In this case, no STOP condition is transmitted to the bus. The hardware behaves as if a STOP condition has been received and it switches to "not addressed" slave receiver mode. The STO flag is cleared by hardware automatically.

SI is the I²C Interrupt Flag. This bit is set when the I²C state changes. However, entering state F8 does not set SI since there is nothing for an interrupt service routine to do in that case.

While SI is set, the low period of the serial clock on the SCL line is stretched, and the serial transfer is suspended. When SCL is HIGH, it is unaffected by the state of the SI flag. SI must be reset by software, by writing a 1 to the SIC bit in CONCLR register.

AA is the Assert Acknowledge Flag. When set to 1, an acknowledge (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

1. The address in the Slave Address Register has been received.

Chapter 9: LPC11Axx I2C-bus interface

- The General Call address has been received while the General Call bit (GC) in ADR is set.
- 3. A data byte has been received while the I²C is in the master receiver mode.
- 4. A data byte has been received while the I²C is in the addressed slave receiver mode

The AA bit can be cleared by writing 1 to the AAC bit in the CONCLR register. When AA is 0, a not acknowledge (HIGH level to SDA) will be returned during the acknowledge clock pulse on the SCL line on the following situations:

- 1. A data byte has been received while the I²C is in the master receiver mode.
- 2. A data byte has been received while the I²C is in the addressed slave receiver mode.

9.7.2 I²C Status register (STAT)

The I²C Status register reflects the condition of the I²C interface. The I²C Status register is Read-Only.

Table 119. I²C Status register (STAT - 0x4000 0004) bit description

Bit	Symbol	Description	Reset value
2:0	-	These bits are unused and are always 0.	0
7:3	Status	These bits give the actual status information about the I ² C interface.	0x1F

The three least significant bits are always 0. Taken as a byte, the status register contents represent a status code. There are 26 possible status codes. When the status code is 0xF8, there is no relevant information available and the SI bit is not set. All other 25 status codes correspond to defined I²C states. When any of these states entered, the SI bit will be set. For a complete list of status codes, refer to tables from Table 134 to Table 139.

9.7.3 I²C Data register (DAT)

This register contains the data to be transmitted or the data just received. The CPU can read and write to this register only while it is not in the process of shifting a byte, when the SI bit is set. Data in DAT remains stable as long as the SI bit is set. Data in DAT is always shifted from right to left: the first bit to be transmitted is the MSB (bit 7), and after a byte has been received, the first bit of received data is located at the MSB of DAT.

Table 120. I²C Data register (DAT - 0x4000 0008) bit description

Bit Symbol	Description	Reset value
7:0 Data	This register holds data values that have been received or are to be transmitted.	0

9.7.4 I²C Slave Address register 0 (ADR0)

This register is readable and writable and are only used when an I²C interface is set to slave mode. In master mode, this register has no effect. The LSB of ADR is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

Any of these registers which contain the bit 00x will be disabled and will not match any address on the bus. The slave address register will be cleared to this disabled state on reset. See also Table 127.

Chapter 9: LPC11Axx I2C-bus interface

Table 121. I²C Slave Address register 0 (ADR0- 0x4000 000C) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00

9.7.5 I²C SCL HIGH and LOW duty cycle registers (SCLH - 0x4000 0010 and SCLL- 0x4000 0014)

Table 122. I²C SCL HIGH Duty Cycle register (SCLH - address 0x4000 0010) bit description

Bit	Symbol	Description	Reset value
15:0	SCLH	Count for SCL HIGH time period selection.	0x0004

Table 123. I²C SCL Low duty cycle register (SCLL - 0x4000 0014) bit description

Bit	Symbol	Description	Reset value
15:0	SCLL	Count for SCL low time period selection.	0x0004

9.7.5.1 Selecting the appropriate I²C data rate and duty cycle

Software must set values for the registers SCLH and SCLL to select the appropriate data rate and duty cycle. SCLH defines the number of I2C_PCLK cycles for the SCL HIGH time, SCLL defines the number of I2C_PCLK cycles for the SCL low time. The frequency is determined by the following formula (I2C_PCLK is the frequency of the peripheral I2C clock):

$$I^{2}C_{bitfrequency} = \frac{I2CPCLK}{SCLH + SCLL}$$
(3)

The values for SCLL and SCLH must ensure that the data rate is in the appropriate I²C data rate range. Each register value must be greater than or equal to 4. <u>Table 124</u> gives some examples of I²C-bus rates based on I2C_PCLK frequency and SCLL and SCLH values.

Table 124. SCLL + SCLH values for selected I²C clock values

I ² C mode	I ² C bit	I2C_PCLK (MHz)								
	frequency	6	8	10	12	16	20	30	40	50
			SCLH + SCLL							
Standard mode	100 kHz	60	80	100	120	160	200	300	400	500
Fast-mode	400 kHz	15	20	25	30	40	50	75	100	125
Fast-mode Plus	1 MHz	-	8	10	12	16	20	30	40	50

SCLL and SCLH values should not necessarily be the same. Software can set different duty cycles on SCL by setting these two registers. For example, the I²C-bus specification defines the SCL low time and high time at different values for a Fast-mode and Fast-mode Plus I²C.

9.7.6 I²C Control Clear register (CONCLR)

The CONCLR register controls clearing of bits in the CON register that controls operation of the I²C interface. Writing a one to a bit of this register causes the corresponding bit in the I²C control register to be cleared. Writing a zero has no effect.

UM10527

Chapter 9: LPC11Axx I2C-bus interface

Table 125. I²C Control Clear register (CONCLR - 0x4000 0018) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	AAC	Assert acknowledge Clear bit.	
3	SIC	I ² C interrupt Clear bit.	0
4	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
5	STAC	START flag Clear bit.	0
6	I2ENC	I ² C interface Disable bit.	0
7	-	Reserved. User software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

AAC is the Assert Acknowledge Clear bit. Writing a 1 to this bit clears the AA bit in the CONSET register. Writing 0 has no effect.

SIC is the I²C Interrupt Clear bit. Writing a 1 to this bit clears the SI bit in the CONSET register. Writing 0 has no effect.

STAC is the START flag Clear bit. Writing a 1 to this bit clears the STA bit in the CONSET register. Writing 0 has no effect.

I2ENC is the I²C Interface Disable bit. Writing a 1 to this bit clears the I2EN bit in the CONSET register. Writing 0 has no effect.

9.7.7 I²C Monitor mode control register (MMCTRL)

This register controls the Monitor mode which allows the I²C module to monitor traffic on the I²C bus without actually participating in traffic or interfering with the I²C bus.

Table 126. I²C Monitor mode control register (MMCTRL - 0x4000 001C) bit description

Bit	Symbol	Value	Description	Reset value
0	MM_ENA		Monitor mode enable.	0
		0	Monitor mode disabled.	
		1	The I ² C module will enter monitor mode. In this mode the SDA output will be forced high. This will prevent the I ² C module from outputting data of any kind (including ACK) onto the I ² C data bus.	
			Depending on the state of the ENA_SCL bit, the output may be also forced high, preventing the module from having control over the I ² C clock line.	
1	ENA_SCL		SCL output enable.	0
		0	When this bit is cleared to '0', the SCL output will be forced high when the module is in monitor mode. As described above, this will prevent the module from having any control over the I^2C clock line.	
		1	When this bit is set, the I ² C module may exercise the same control over the clock line that it would in normal operation. This means that, acting as a slave peripheral, the I ² C module can "stretch" the clock line (hold it low) until it has had time to respond to an I ² C interrupt.[1]	

Chapter 9: LPC11Axx I2C-bus interface

Table 126. I²C Monitor mode control register (MMCTRL - 0x4000 001C) bit description

Bit	Symbol	Value	Description	Reset value
2	MATCH_ALL		Select interrupt register match.	0
		0	When this bit is cleared, an interrupt will only be generated when a match occurs to one of the (up-to) four address registers described above. That is, the module will respond as a normal slave as far as address-recognition is concerned.	
		1	When this bit is set to '1' and the I ² C is in monitor mode, an interrupt will be generated on ANY address received. This will enable the part to monitor all traffic on the bus.	
31:3	-		Reserved.	-

^[1] When the ENA_SCL bit is cleared and the I²C no longer has the ability to stall the bus, interrupt response time becomes important. To give the part more time to respond to an I²C interrupt under these conditions, a DATA_BUFFER register is used (Section 9.7.9) to hold received data for a full 9-bit word transmission time.

Remark: The ENA_SCL and MATCH_ALL bits have no effect if the MM_ENA is '0' (i.e. if the module is NOT in monitor mode).

9.7.7.1 Interrupt in Monitor mode

All interrupts will occur as normal when the module is in monitor mode. This means that the first interrupt will occur when an address-match is detected (any address received if the MATCH_ALL bit is set, otherwise an address matching one of the four address registers).

Subsequent to an address-match detection, interrupts will be generated after each data byte is received for a slave-write transfer, or after each byte that the module "thinks" it has transmitted for a slave-read transfer. In this second case, the data register will actually contain data transmitted by some other slave on the bus which was actually addressed by the master.

Following all of these interrupts, the processor may read the data register to see what was actually transmitted on the bus.

9.7.7.2 Loss of arbitration in Monitor mode

In monitor mode, the I²C module will not be able to respond to a request for information by the bus master or issue an ACK). Some other slave on the bus will respond instead. This will most probably result in a lost-arbitration state as far as our module is concerned.

Software should be aware of the fact that the module is in monitor mode and should not respond to any loss of arbitration state that is detected. In addition, hardware may be designed into the module to block some/all loss of arbitration states from occurring if those state would either prevent a desired interrupt from occurring or cause an unwanted interrupt to occur. Whether any such hardware will be added is still to be determined.

9.7.8 I²C Slave Address registers (ADR[1, 2, 3])

These registers are readable and writable and are only used when an I^2C interface is set to slave mode. In master mode, this register has no effect. The LSB of ADR is the General Call bit. When this bit is set, the General Call address (0x00) is recognized.

Any of these registers which contain the bit 00x will be disabled and will not match any address on the bus. All four registers will be cleared to this disabled state on reset.

UM10527

Chapter 9: LPC11Axx I2C-bus interface

Table 127. I²C Slave Address registers (ADR[1, 2, 3]- 0x4000 00[20, 24, 28]) bit description

Bit	Symbol	Description	Reset value
0	GC	General Call enable bit.	0
7:1	Address	The I ² C device address for slave mode.	0x00

9.7.9 I²C Data buffer register (DATA_BUFFER)

In monitor mode, the I²C module may lose the ability to stretch the clock (stall the bus) if the ENA_SCL bit is not set. This means that the processor will have a limited amount of time to read the contents of the data received on the bus. If the processor reads the DAT shift register, as it ordinarily would, it could have only one bit-time to respond to the interrupt before the received data is overwritten by new data.

To give the processor more time to respond, a new 8-bit, read-only DATA_BUFFER register will be added. The contents of the 8 MSBs of the DAT shift register will be transferred to the DATA_BUFFER automatically after every nine bits (8 bits of data plus ACK or NACK) has been received on the bus. This means that the processor will have nine bit transmission times to respond to the interrupt and read the data before it is overwritten.

The processor will still have the ability to read DAT directly, as usual, and the behavior of DAT will not be altered in any way.

Although the DATA_BUFFER register is primarily intended for use in monitor mode with the ENA_SCL bit = '0', it will be available for reading at any time under any mode of operation.

Table 128. I²C Data buffer register (DATA_BUFFER - 0x4000 002C) bit description

Bit	Symbol	Description	Reset value
7:0	Data	This register holds contents of the 8 MSBs of the DAT shift register.	0

9.7.10 I²C Mask registers (MASK[0, 1, 2, 3])

The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the ADRn register associated with that mask register. In other words, bits in an ADRn register which are masked are not taken into account in determining an address match.

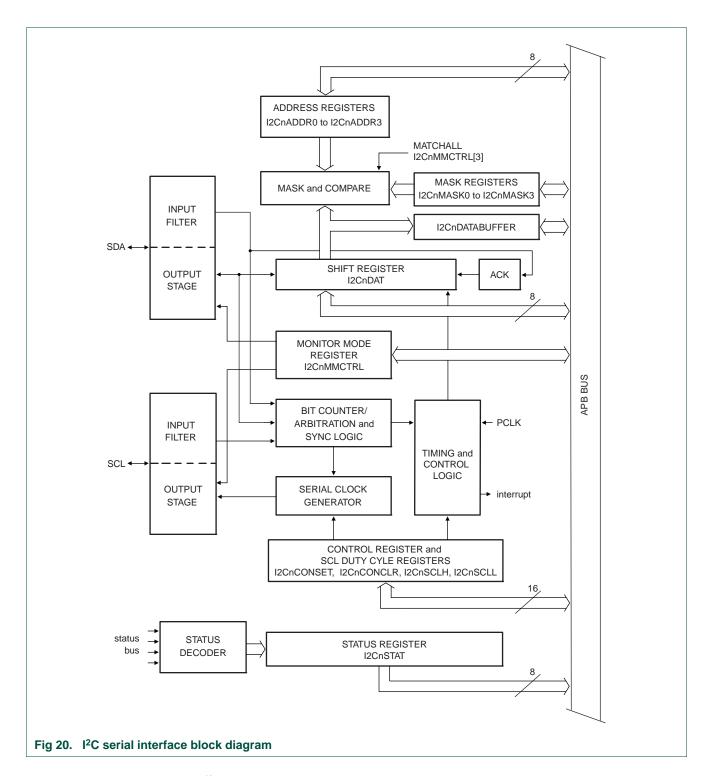
On reset, all mask register bits are cleared to '0'.

The mask register has no effect on comparison to the General Call address ("0000000").

Bits(31:8) and bit(0) of the mask registers are unused and should not be written to. These bits will always read back as zeros.

When an address-match interrupt occurs, the processor will have to read the data register (DAT) to determine what the received address was that actually caused the match.

Chapter 9: LPC11Axx I2C-bus interface


Table 129. I²C Mask registers (MASK[0, 1, 2, 3] - 0x4000 00[30, 34, 38, 3C]) bit description

Bit	Symbol	Description	Reset value
0	-	Reserved. User software should not write ones to reserved bits. This bit reads always back as 0.	0
7:1	MASK	Mask bits.	0x00
31: 8	-	Reserved. User software should not write ones to reserved bits. These bits read always back as 0's.	0

9.8 Functional description

<u>Figure 20</u> shows how the on-chip I²C-bus interface is implemented, and the following text describes the individual blocks.

Chapter 9: LPC11Axx I2C-bus interface

9.8.1 Input filters and output stages

Input signals are synchronized with the internal clock, and spikes shorter than three clocks are filtered out.

The output for I²C is a special pad designed to conform to the I²C specification.

Chapter 9: LPC11Axx I2C-bus interface

9.8.2 Address Registers, ADR0 to ADR3

These registers may be loaded with the 7-bit slave address (7 most significant bits) to which the I²C block will respond when programmed as a slave transmitter or receiver. The LSB (GC) is used to enable General Call address (0x00) recognition. When multiple slave addresses are enabled, the actual address received may be read from the DAT register at the state where the own slave address has been received.

9.8.3 Address masks, MASK0 to MASK3

The four mask registers each contain seven active bits (7:1). Any bit in these registers which is set to '1' will cause an automatic compare on the corresponding bit of the received address when it is compared to the ADRn register associated with that mask register. In other words, bits in an ADRn register which are masked are not taken into account in determining an address match.

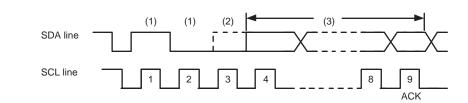
If the ADRn bit 0 (GC enable bit) is as set and bits(7:1) are all zeroes, then the part will respond to a received address = "0000000" regardless of the state of the associated mask register.

When an address-match interrupt occurs, the processor will have to read the data register (DAT) to determine what the received address was that actually caused the match.

9.8.4 Comparator

The comparator compares the received 7-bit slave address with its own slave address (7 most significant bits in ADR). It also compares the first received 8-bit byte with the General Call address (0x00). If an equality is found, the appropriate status bits are set and an interrupt is requested.

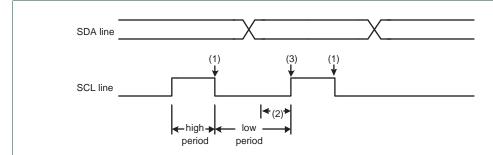
9.8.5 Shift register, DAT


This 8-bit register contains a byte of serial data to be transmitted or a byte which has just been received. Data in DAT is always shifted from right to left; the first bit to be transmitted is the MSB (bit 7) and, after a byte has been received, the first bit of received data is located at the MSB of DAT. While data is being shifted out, data on the bus is simultaneously being shifted in; DAT always contains the last byte present on the bus. Thus, in the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in DAT.

9.8.6 Arbitration and synchronization logic

In the master transmitter mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the I²C-bus. If another device on the bus overrules a logic 1 and pulls the SDA line low, arbitration is lost, and the I²C block immediately changes from master transmitter to slave receiver. The I²C block will continue to output clock pulses (on SCL) until transmission of the current serial byte is complete.

Arbitration may also be lost in the master receiver mode. Loss of arbitration in this mode can only occur while the I²C block is returning a "not acknowledge: (logic 1) to the bus. Arbitration is lost when another device on the bus pulls this signal low. Since this can occur only at the end of a serial byte, the I²C block generates no further clock pulses. Figure 21 shows the arbitration procedure.


Chapter 9: LPC11Axx I2C-bus interface

- (1) Another device transmits serial data.
- (2) Another device overrules a logic (dotted line) transmitted this I²C master by pulling the SDA line low. Arbitration is lost, and this I²C enters Slave Receiver mode.
- (3) This I²C is in Slave Receiver mode but still generates clock pulses until the current byte has been transmitted. This I²C will not generate clock pulses for the next byte. Data on SDA originates from the new master once it has won arbitration.

Fig 21. Arbitration procedure

The synchronization logic will synchronize the serial clock generator with the clock pulses on the SCL line from another device. If two or more master devices generate clock pulses, the "mark" duration is determined by the device that generates the shortest "marks," and the "space" duration is determined by the device that generates the longest "spaces". Figure 22 shows the synchronization procedure.

- (1) Another device pulls the SCL line low before this I²C has timed a complete high time. The other device effectively determines the (shorter) HIGH period.
- (2) Another device continues to pull the SCL line low after this I²C has timed a complete low time and released SCL. The I²C clock generator is forced to wait until SCL goes HIGH. The other device effectively determines the (longer) LOW period.
- (3) The SCL line is released, and the clock generator begins timing the HIGH time.

Fig 22. Serial clock synchronization

A slave may stretch the space duration to slow down the bus master. The space duration may also be stretched for handshaking purposes. This can be done after each bit or after a complete byte transfer. the I²C block will stretch the SCL space duration after a byte has been transmitted or received and the acknowledge bit has been transferred. The serial interrupt flag (SI) is set, and the stretching continues until the serial interrupt flag is cleared.

9.8.7 Serial clock generator

This programmable clock pulse generator provides the SCL clock pulses when the I²C block is in the master transmitter or master receiver mode. It is switched off when the I²C block is in a slave mode. The I²C output clock frequency and duty cycle is programmable

UM10527

Chapter 9: LPC11Axx I2C-bus interface

via the I²C Clock Control Registers. See the description of the SCLL and SCLH registers for details. The output clock pulses have a duty cycle as programmed unless the bus is synchronizing with other SCL clock sources as described above.

9.8.8 Timing and control

The timing and control logic generates the timing and control signals for serial byte handling. This logic block provides the shift pulses for DAT, enables the comparator, generates and detects START and STOP conditions, receives and transmits acknowledge bits, controls the master and slave modes, contains interrupt request logic, and monitors the I²C-bus status.

9.8.9 Control register, CONSET and CONCLR

The I^2C control register contains bits used to control the following I^2C block functions: start and restart of a serial transfer, termination of a serial transfer, bit rate, address recognition, and acknowledgment.

The contents of the I²C control register may be read as CONSET. Writing to CONSET will set bits in the I²C control register that correspond to ones in the value written. Conversely, writing to CONCLR will clear bits in the I²C control register that correspond to ones in the value written.

9.8.10 Status decoder and status register

The status decoder takes all of the internal status bits and compresses them into a 5-bit code. This code is unique for each I²C-bus status. The 5-bit code may be used to generate vector addresses for fast processing of the various service routines. Each service routine processes a particular bus status. There are 26 possible bus states if all four modes of the I²C block are used. The 5-bit status code is latched into the five most significant bits of the status register when the serial interrupt flag is set (by hardware) and remains stable until the interrupt flag is cleared by software. The three least significant bits of the status register are always zero. If the status code is used as a vector to service routines, then the routines are displaced by eight address locations. Eight bytes of code is sufficient for most of the service routines (see the software example in this section).

9.9 I²C operating modes

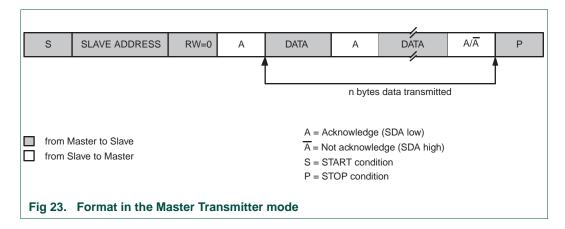
In a given application, the I²C block may operate as a master, a slave, or both. In the slave mode, the I²C hardware looks for any one of its four slave addresses and the General Call address. If one of these addresses is detected, an interrupt is requested. If the processor wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave operation is not interrupted. If bus arbitration is lost in the master mode, the I²C block switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

9.9.1 Master Transmitter mode

In this mode data is transmitted from master to slave. Before the master transmitter mode can be entered, the CONSET register must be initialized as shown in <u>Table 130</u>. I2EN must be set to 1 to enable the I²C function. If the AA bit is 0, the I²C interface will not acknowledge any address when another device is master of the bus, so it can not enter

Chapter 9: LPC11Axx I2C-bus interface

slave mode. The STA, STO and SI bits must be 0. The SI bit is cleared by writing 1 to the SIC bit in the CONCLR register. THe STA bit should be cleared after writing the slave address.

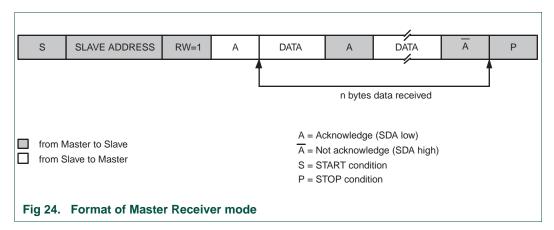

Table 130. CONSET used to configure Master mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	0	-	-

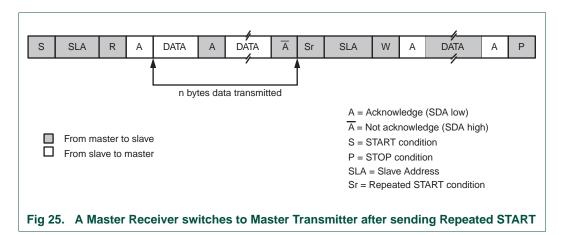
The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this mode the data direction bit (R/W) should be 0 which means Write. The first byte transmitted contains the slave address and Write bit. Data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

The I²C interface will enter master transmitter mode when software sets the STA bit. The I²C logic will send the START condition as soon as the bus is free. After the START condition is transmitted, the SI bit is set, and the status code in the STAT register is 0x08. This status code is used to vector to a state service routine which will load the slave address and Write bit to the DAT register, and then clear the SI bit. SI is cleared by writing a 1 to the SIC bit in the CONCLR register.

When the slave address and R/W bit have been transmitted and an acknowledgment bit has been received, the SI bit is set again, and the possible status codes now are 0x18, 0x20, or 0x38 for the master mode, or 0x68, 0x78, or 0xB0 if the slave mode was enabled (by setting AA to 1). The appropriate actions to be taken for each of these status codes are shown in Table 134 to Table 139.



9.9.2 Master Receiver mode


In the master receiver mode, data is received from a slave transmitter. The transfer is initiated in the same way as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load the slave address and the data direction bit to the I²C Data register (DAT), and then clear the SI bit. In this case, the data direction bit (R/W) should be 1 to indicate a read.

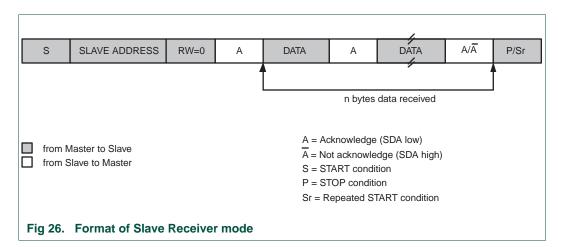
Chapter 9: LPC11Axx I2C-bus interface

When the slave address and data direction bit have been transmitted and an acknowledge bit has been received, the SI bit is set, and the Status Register will show the status code. For master mode, the possible status codes are 0x40, 0x48, or 0x38. For slave mode, the possible status codes are 0x68, 0x78, or 0xB0. For details, refer to Table 135.

After a Repeated START condition, I²C may switch to the master transmitter mode.

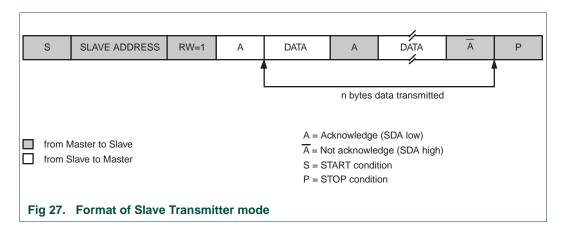
9.9.3 Slave Receiver mode

In the slave receiver mode, data bytes are received from a master transmitter. To initialize the slave receiver mode, write any of the Slave Address registers (ADR0-3) and write the I²C Control Set register (CONSET) as shown in Table 131.


Table 131. CONSET used to configure Slave mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

I2EN must be set to 1 to enable the I²C function. AA bit must be set to 1 to acknowledge its own slave address or the General Call address. The STA, STO and SI bits are cleared to 0.


Chapter 9: LPC11Axx I2C-bus interface

After ADR and CONSET are initialized, the I²C interface waits until it is addressed by its own address or general address followed by the data direction bit. If the direction bit is 0 (W), it enters slave receiver mode. If the direction bit is 1 (R), it enters slave transmitter mode. After the address and direction bit have been received, the SI bit is set and a valid status code can be read from the Status register (STAT). Refer to Table 138 for the status codes and actions.

9.9.4 Slave Transmitter mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will be 1, indicating a read operation. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer. In a given application, I²C may operate as a master and as a slave. In the slave mode, the I²C hardware looks for its own slave address and the General Call address. If one of these addresses is detected, an interrupt is requested. When the microcontrollers wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action is not interrupted. If bus arbitration is lost in the master mode, the I²C interface switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

Chapter 9: LPC11Axx I2C-bus interface

9.10 Details of I²C operating modes

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave Receiver
- Slave Transmitter

Data transfers in each mode of operation are shown in <u>Figure 28</u>, <u>Figure 29</u>, <u>Figure 30</u>, <u>Figure 31</u>, and <u>Figure 32</u>. <u>Table 132</u> lists abbreviations used in these figures when describing the I²C operating modes.

Table 132. Abbreviations used to describe I²C operation

Abbreviation	Explanation
S	START Condition
SLA	7-bit slave address
R	Read bit (HIGH level at SDA)
W	Write bit (LOW level at SDA)
A	Acknowledge bit (LOW level at SDA)
Ā	Not acknowledge bit (HIGH level at SDA)
Data	8-bit data byte
P	STOP condition

In <u>Figure 28</u> to <u>Figure 32</u>, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in the STAT register. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.

When a serial interrupt routine is entered, the status code in STAT is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in tables from <u>Table 134</u> to <u>Table 140</u>.

9.10.1 Master Transmitter mode

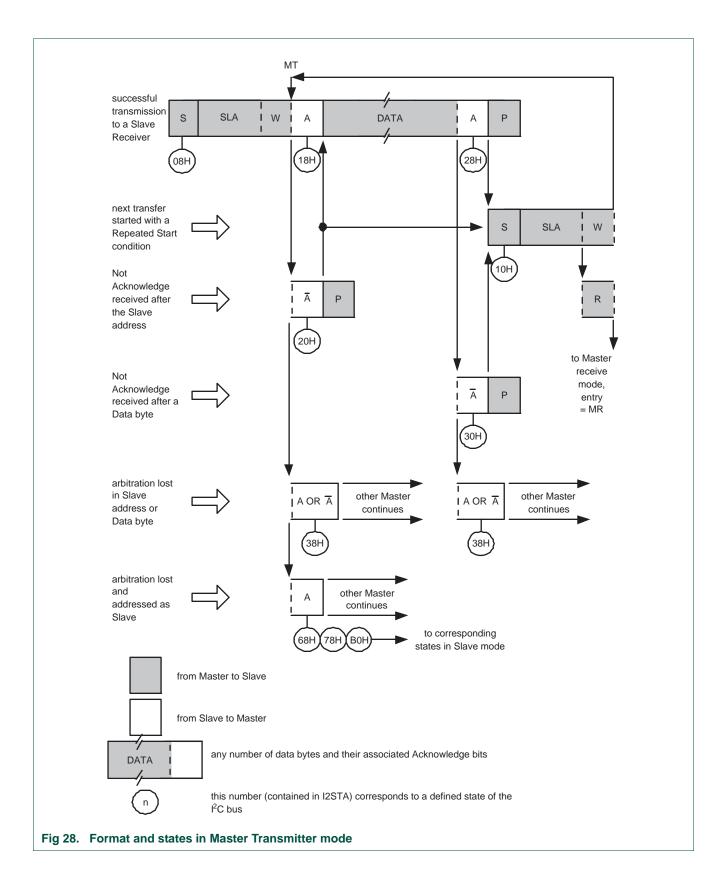
In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (see <u>Figure 28</u>). Before the master transmitter mode can be entered, CON must be initialized as follows:

Table 133. CON for Master Transmitter mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	Х	-	-

The I²C rate must also be configured in the SCLL and SCLH registers. I2EN must be set to 1 to enable the I²C block. If the AA bit is reset, the I²C block will not acknowledge its own slave address or the General Call address in the event of another device becoming master of the bus. In other words, if AA is reset, the I²C interface cannot enter a slave mode. STA, STO, and SI must be reset.

UM10527


Chapter 9: LPC11Axx I2C-bus interface

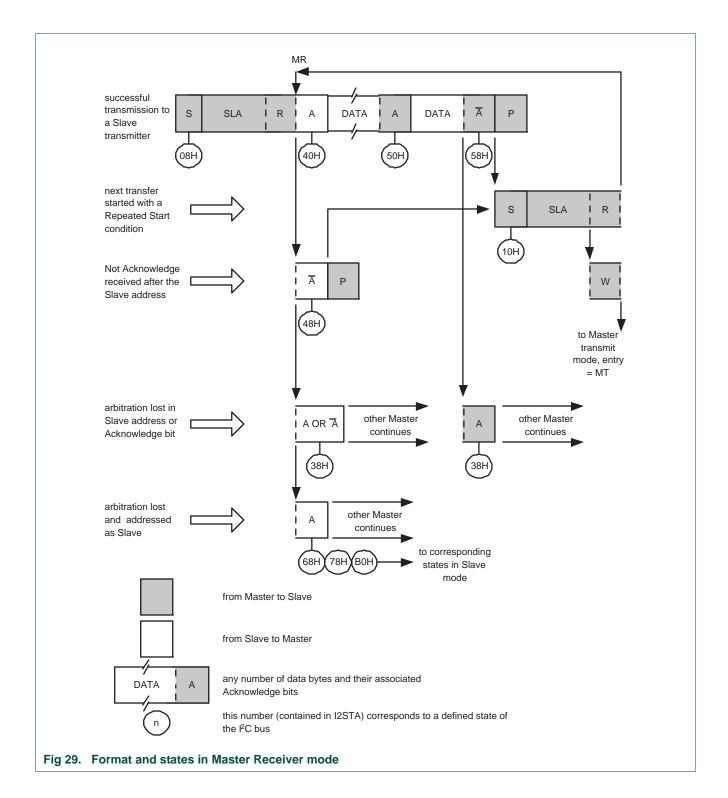
The master transmitter mode may now be entered by setting the STA bit. The I²C logic will now test the I²C-bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI) is set, and the status code in the status register (STAT) will be 0x08. This status code is used by the interrupt service routine to enter the appropriate state service routine that loads DAT with the slave address and the data direction bit (SLA+W). The SI bit in CON must then be reset before the serial transfer can continue.

When the slave address and the direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in STAT are possible. There are 0x18, 0x20, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = logic 1). The appropriate action to be taken for each of these status codes is detailed in Table 134. After a Repeated START condition (state 0x10). The I²C block may switch to the master receiver mode by loading DAT with SLA+R).

Table 134. Master Transmitter mode

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (STAT)	and hardware	To/From DAT To CON					
(SIAI)			STA	STO	SI	AA	
0x08	A START condition has been transmitted.	Load SLA+W; clear STA	Χ	0	0	Χ	SLA+W will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+W or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+R; Clear STA	Χ	0	0	Х	SLA+R will be transmitted; the I ² C block will be switched to MST/REC mode.
0x18	SLA+W has been transmitted; ACK has	Load data byte or	0	0	0	X	Data byte will be transmitted; ACK bit wil be received.
	been received.	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
		No DAT action or	0	1	0	X	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x20	SLA+W has been transmitted; NOT ACK	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	has been received.	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
		No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x28	Data byte in DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	ACK has been received.	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
	receivea.	No DAT action or	0	1	0	Х	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x30	Data byte in DAT has been transmitted;	Load data byte or	0	0	0	Х	Data byte will be transmitted; ACK bit will be received.
	NOT ACK has been	No DAT action or	1	0	0	Χ	Repeated START will be transmitted.
	received.	No DAT action or	0	1	0	Χ	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag will be reset.
0x38	Arbitration lost in SLA+R/W or Data	No DAT action or	0	0	0	Χ	I ² C-bus will be released; not addressed slave will be entered.
	bytes.	No DAT action	1	0	0	X	A START condition will be transmitted when the bus becomes free.

Chapter 9: LPC11Axx I2C-bus interface


9.10.2 Master Receiver mode

In the master receiver mode, a number of data bytes are received from a slave transmitter (see <u>Figure 29</u>). The transfer is initialized as in the master transmitter mode. When the START condition has been transmitted, the interrupt service routine must load DAT with the 7-bit slave address and the data direction bit (SLA+R). The SI bit in CON must then be cleared before the serial transfer can continue.

When the slave address and the data direction bit have been transmitted and an acknowledgment bit has been received, the serial interrupt flag (SI) is set again, and a number of status codes in STAT are possible. These are 0x40, 0x48, or 0x38 for the master mode and also 0x68, 0x78, or 0xB0 if the slave mode was enabled (AA = 1). The appropriate action to be taken for each of these status codes is detailed in <u>Table 135</u>. After a Repeated START condition (state 0x10), the I²C block may switch to the master transmitter mode by loading DAT with SLA+W.

Table 135. Master Receiver mode

Status	Status of the I ² C-bus	Application softwa	are re	spons	Next action taken by I ² C hardware		
Code (STAT)	and hardware	To/From DAT To CON					
(SIAI)			STA	STO	SI	AA	
80x0	A START condition has been transmitted.	Load SLA+R	Χ	0	0	Χ	SLA+R will be transmitted; ACK bit will be received.
0x10	A Repeated START	Load SLA+R or	Χ	0	0	Χ	As above.
	condition has been transmitted.	Load SLA+W	Х	0	0	Χ	SLA+W will be transmitted; the I ² C block will be switched to MST/TRX mode.
0x38	Arbitration lost in NOT ACK bit.	No DAT action or	0	0	0	Χ	I ² C-bus will be released; the I ² C block wi enter a slave mode.
		No DAT action	1	0	0	Χ	A START condition will be transmitted when the bus becomes free.
0x40	SLA+R has been transmitted; ACK has	No DAT action or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been received.	No DAT action	0	0	0	1	Data byte will be received; ACK bit will b returned.
0x48	SLA+R has been transmitted; NOT ACK	No DAT action or	1	0	0	Χ	Repeated START condition will be transmitted.
	has been received.	No DAT action or	0	1	0	Χ	STOP condition will be transmitted; STO flag will be reset.
		No DAT action	1	1	0	X	STOP condition followed by a START condition will be transmitted; STO flag wibe reset.
0x50	Data byte has been received; ACK has	Read data byte or	0	0	0	0	Data byte will be received; NOT ACK bit will be returned.
	been returned.	Read data byte	0	0	0	1	Data byte will be received; ACK bit will b returned.
0x58	Data byte has been received; NOT ACK	Read data byte or	1	0	0	Χ	Repeated START condition will be transmitted.
	has been returned.	Read data byte or	0	1	0	Χ	STOP condition will be transmitted; STO flag will be reset.
		Read data byte	1	1	0	Χ	STOP condition followed by a START condition will be transmitted; STO flag w be reset.

Chapter 9: LPC11Axx I2C-bus interface

9.10.3 Slave Receiver mode

In the slave receiver mode, a number of data bytes are received from a master transmitter (see <u>Figure 30</u>). To initiate the slave receiver mode, ADR and CON must be loaded as follows:

Table 136. ADR usage in Slave Receiver mode

Bit	7	6	5	4	3	2	1	0
Symbol			ow	n slave 7-b	oit address			GC

The upper 7 bits are the address to which the I²C block will respond when addressed by a master. If the LSB (GC) is set, the I²C block will respond to the General Call address (0x00); otherwise it ignores the General Call address.

Table 137. CON for Slave Receiver mode

Bit	7	6	5	4	3	2	1	0
Symbol	-	I2EN	STA	STO	SI	AA	-	-
Value	-	1	0	0	0	1	-	-

The I²C-bus rate settings do not affect the I²C block in the slave mode. I2EN must be set to logic 1 to enable the I²C block. The AA bit must be set to enable the I²C block to acknowledge its own slave address or the General Call address. STA, STO, and SI must be reset.

When ADR and CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "0" (W) for the I²C block to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from STAT. This status code is used to vector to a state service routine. The appropriate action to be taken for each of these status codes is detailed in <u>Table 138</u>. The slave receiver mode may also be entered if arbitration is lost while the I²C block is in the master mode (see status 0x68 and 0x78).

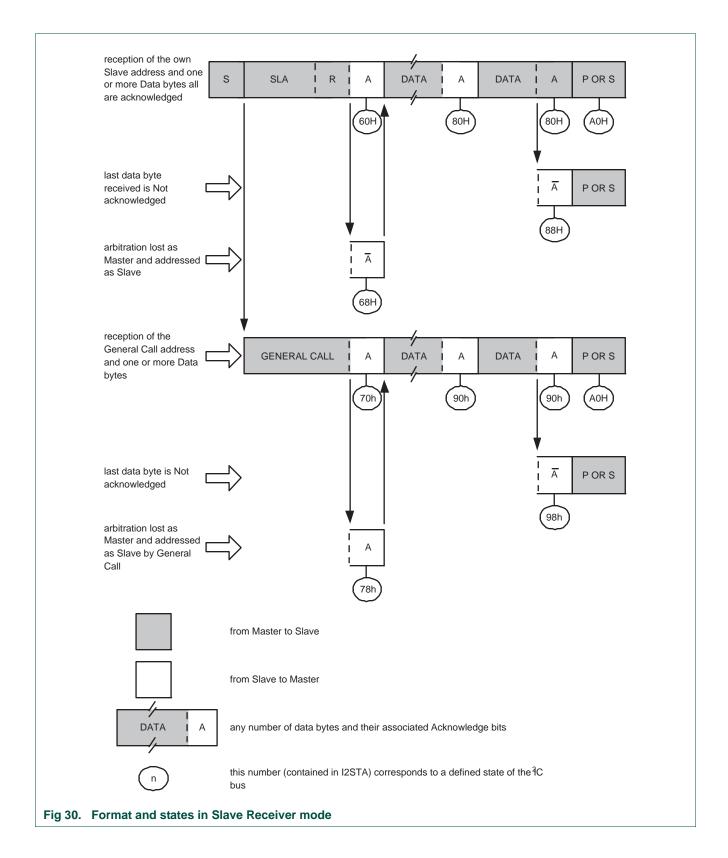

If the AA bit is reset during a transfer, the I²C block will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

Table 138. Slave Receiver mode

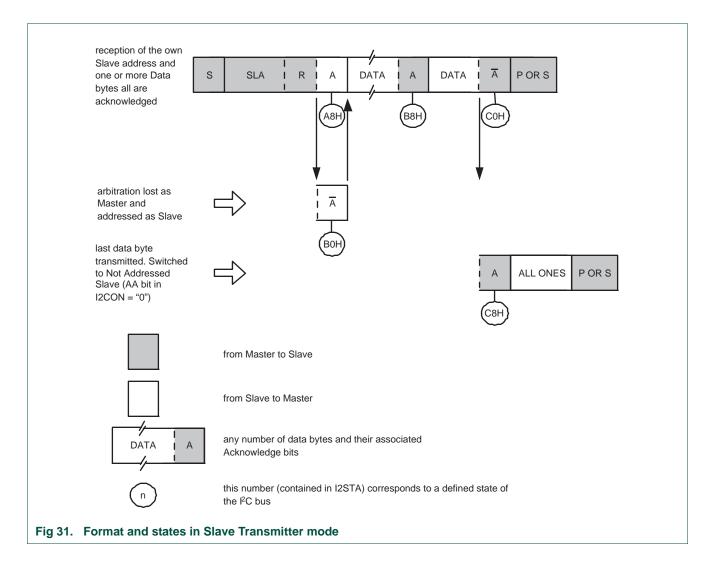
Status	Status of the I ² C-bus and hardware	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (STAT)		To/From DAT	То С				
				STO		AA	
0x60	Own SLA+W has been received; ACK	No DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	has been returned.	No DAT action	X	0	0	1	Data byte will be received and ACK will be returned.
0x68	Arbitration lost in SLA+R/W as master;	No DAT action or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
	Own SLA+W has been received, ACK returned.	No DAT action	X	0	0	1	Data byte will be received and ACK will be returned.
0x70	General call address (0x00) has been	No DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	received; ACK has been returned.	No DAT action	Χ	0	0	1	Data byte will be received and ACK will be returned.
0x78	Arbitration lost in SLA+R/W as master;	No DAT action or	Χ	0	0	0	Data byte will be received and NOT ACK will be returned.
	General call address has been received, ACK has been returned.	No DAT action	X	0	0	1	Data byte will be received and ACK will be returned.
0x80	Previously addressed with own SLV address; DATA has been received; ACK has been returned.	Read data byte or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
		Read data byte	Х	0	0	1	Data byte will be received and ACK will be returned.
0x88	Previously addressed with own SLA; DATA byte has been received; NOT ACK has been returned.	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General cal address will be recognized if ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; not recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General cal address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0x90	Previously addressed with General Call;	Read data byte or	X	0	0	0	Data byte will be received and NOT ACK will be returned.
	DATA byte has been received; ACK has been returned.	Read data byte	X	0	0	1	Data byte will be received and ACK will be returned.

Table 138. Slave Receiver mode ...continued

	_						_
Status Code (STAT)	Status of the I ² C-bus and hardware	Application softwa	are re	spons	е	Next action taken by I ² C hardware	
		To/From DAT	To CON				
			STA	STO	SI	AA	
0x98	Previously addressed with General Call; DATA byte has been received; NOT ACK has been returned.	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0xA0	A STOP condition or Repeated START condition has been received while still addressed as SLV/REC or SLV/TRX.	No STDAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No STDAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No STDAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No STDAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.

Chapter 9: LPC11Axx I2C-bus interface

9.10.4 Slave Transmitter mode


In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (see Figure 31). Data transfer is initialized as in the slave receiver mode. When ADR and CON have been initialized, the I²C block waits until it is addressed by its own slave address followed by the data direction bit which must be "1" (R) for the I²C block to operate in the slave transmitter mode. After its own slave address and the R bit have been received, the serial interrupt flag (SI) is set and a valid status code can be read from STAT. This status code is used to vector to a state service routine, and the appropriate action to be taken for each of these status codes is detailed in Table 139. The slave transmitter mode may also be entered if arbitration is lost while the I²C block is in the master mode (see state 0xB0).

If the AA bit is reset during a transfer, the I²C block will transmit the last byte of the transfer and enter state 0xC0 or 0xC8. The I²C block is switched to the not addressed slave mode and will ignore the master receiver if it continues the transfer. Thus the master receiver receives all 1s as serial data. While AA is reset, the I²C block does not respond to its own slave address or a General Call address. However, the I²C-bus is still monitored, and address recognition may be resumed at any time by setting AA. This means that the AA bit may be used to temporarily isolate the I²C block from the I²C-bus.

Table 139. Slave Transmitter mode

Status	Status of the I ² C-bus	Application softw	are re	spons	е	Next action taken by I ² C hardware	
Code (STAT)	and hardware	To/From DAT	То С	ON			
			STA	STO	SI	AA	
0xA8	Own SLA+R has been received; ACK has	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK bit will be received.
	been returned.	Load data byte	X	0	0	1	Data byte will be transmitted; ACK will be received.
0xB0	Arbitration lost in SLA+R/W as master;	Load data byte or	Χ	0	0	0	Last data byte will be transmitted and ACK bit will be received.
	Own SLA+R has been received, ACK has been returned.	Load data byte	X	0	0	1	Data byte will be transmitted; ACK bit will be received.
0xB8	Data byte in DAT has been transmitted;	Load data byte or	Χ	0	0	0	Last data byte will be transmitted and ACK bit will be received.
	ACK has been received.	Load data byte	Χ	0	0	1	Data byte will be transmitted; ACK bit will be received.
0xC0	Data byte in DAT has been transmitted; NOT ACK has been received.	No DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No DAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0xC8	Last data byte in DAT has been transmitted (AA = 0); ACK has been received.	No DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		No DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		No DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		No DAT action	1	0	0	01	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.

Chapter 9: LPC11Axx I2C-bus interface

9.10.5 Miscellaneous states

There are two STAT codes that do not correspond to a defined I²C hardware state (see Table 140). These are discussed below.

9.10.5.1 STAT = 0xF8

This status code indicates that no relevant information is available because the serial interrupt flag, SI, is not yet set. This occurs between other states and when the I²C block is not involved in a serial transfer.

9.10.5.2 STAT = 0x00

This status code indicates that a bus error has occurred during an I²C serial transfer. A bus error is caused when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. A bus error may also be caused when external interference disturbs the internal I²C block signals. When a bus error occurs, SI is set. To recover from a bus error, the STO flag must be set and SI must be cleared. This

Chapter 9: LPC11Axx I2C-bus interface

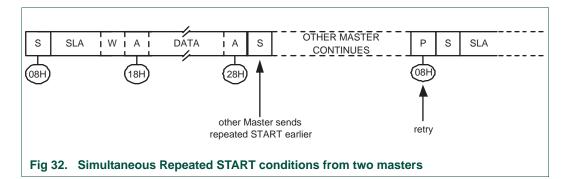
causes the I²C block to enter the "not addressed" slave mode (a defined state) and to clear the STO flag (no other bits in CON are affected). The SDA and SCL lines are released (a STOP condition is not transmitted).

Table 140. Miscellaneous States

Status Code (STAT)	Status of the I ² C-bus and hardware	Application softw To/From DAT	То С	-		AA	Next action taken by I ² C hardware
0xF8	No relevant state information available; SI = 0.	No DAT action	١	No CO	N actio	on	Wait or proceed current transfer.
0x00	Bus error during MST or selected slave modes, due to an illegal START or STOP condition. State 0x00 can also occur when interference causes the I ² C block to enter an undefined state.	No DAT action	0	1	0	X	Only the internal hardware is affected in the MST or addressed SLV modes. In all cases, the bus is released and the I ² C block is switched to the not addressed SLV mode. STO is reset.

9.10.6 Some special cases

The I²C hardware has facilities to handle the following special cases that may occur during a serial transfer:


- Simultaneous Repeated START conditions from two masters
- · Data transfer after loss of arbitration
- Forced access to the I²C-bus
- I²C-bus obstructed by a LOW level on SCL or SDA
- Bus error

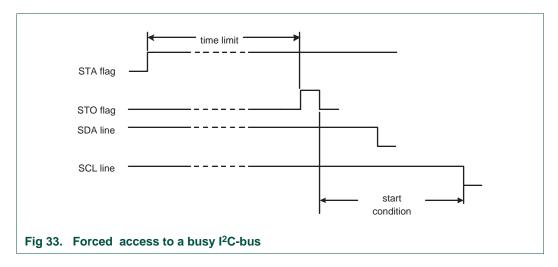
9.10.6.1 Simultaneous Repeated START conditions from two masters

A Repeated START condition may be generated in the master transmitter or master receiver modes. A special case occurs if another master simultaneously generates a Repeated START condition (see <u>Figure 32</u>). Until this occurs, arbitration is not lost by either master since they were both transmitting the same data.

If the I^2C hardware detects a Repeated START condition on the I^2C -bus before generating a Repeated START condition itself, it will release the bus, and no interrupt request is generated. If another master frees the bus by generating a STOP condition, the I^2C block will transmit a normal START condition (state 0x08), and a retry of the total serial data transfer can commence.

Chapter 9: LPC11Axx I2C-bus interface

9.10.6.2 Data transfer after loss of arbitration

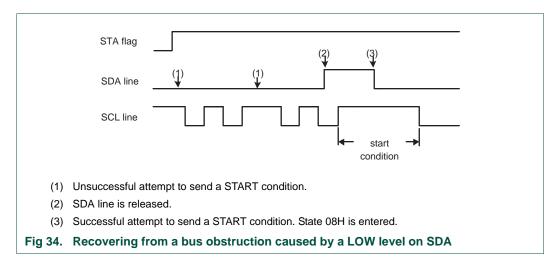

Arbitration may be lost in the master transmitter and master receiver modes (see <u>Figure 21</u>). Loss of arbitration is indicated by the following states in STAT; 0x38, 0x68, 0x78, and 0xB0 (see <u>Figure 28</u> and <u>Figure 29</u>).

If the STA flag in CON is set by the routines which service these states, then, if the bus is free again, a START condition (state 0x08) is transmitted without intervention by the CPU, and a retry of the total serial transfer can commence.

9.10.6.3 Forced access to the I²C-bus

In some applications, it may be possible for an uncontrolled source to cause a bus hang-up. In such situations, the problem may be caused by interference, temporary interruption of the bus or a temporary short-circuit between SDA and SCL.

If an uncontrolled source generates a superfluous START or masks a STOP condition, then the I²C-bus stays busy indefinitely. If the STA flag is set and bus access is not obtained within a reasonable amount of time, then a forced access to the I²C-bus is possible. This is achieved by setting the STO flag while the STA flag is still set. No STOP condition is transmitted. The I²C hardware behaves as if a STOP condition was received and is able to transmit a START condition. The STO flag is cleared by hardware (see Figure 33).



Chapter 9: LPC11Axx I2C-bus interface

9.10.6.4 I²C-bus obstructed by a Low on SCL or SDA

An I²C-bus hang-up can occur if either the SDA or SCL line is held LOW by any device on the bus. If the SCL line is obstructed (pulled LOW) by a device on the bus, no further serial transfer is possible, and the problem must be resolved by the device that is pulling the SCL bus line LOW.

Typically, the SDA line may be obstructed by another device on the bus that has become out of synchronization with the current bus master by either missing a clock, or by sensing a noise pulse as a clock. In this case, the problem can be solved by transmitting additional clock pulses on the SCL line (see Figure 34). The I²C interface does not include a dedicated time-out timer to detect an obstructed bus, but this can be implemented using another timer in the system. When detected, software can force clocks (up to 9 may be required) on SCL until SDA is released by the offending device. At that point, the slave may still be out of synchronization, so a START should be generated to insure that all I²C peripherals are synchronized.

9.10.6.5 Bus error

A bus error occurs when a START or STOP condition is detected at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data bit, or an acknowledge bit.

The I²C hardware only reacts to a bus error when it is involved in a serial transfer either as a master or an addressed slave. When a bus error is detected, the I²C block immediately switches to the not addressed slave mode, releases the SDA and SCL lines, sets the interrupt flag, and loads the status register with 0x00. This status code may be used to vector to a state service routine which either attempts the aborted serial transfer again or simply recovers from the error condition as shown in Table 140.

9.10.7 I²C state service routines

This section provides examples of operations that must be performed by various I²C state service routines. This includes:

- Initialization of the I²C block after a Reset.
- I²C Interrupt Service
- The 26 state service routines providing support for all four I²C operating modes.

Chapter 9: LPC11Axx I2C-bus interface

9.10.8 Initialization

In the initialization example, the I²C block is enabled for both master and slave modes. For each mode, a buffer is used for transmission and reception. The initialization routine performs the following functions:

- ADR is loaded with the part's own slave address and the General Call bit (GC)
- The I²C interrupt enable and interrupt priority bits are set
- The slave mode is enabled by simultaneously setting the I2EN and AA bits in CON and the serial clock frequency (for master modes) is defined by is defined by loading the SCLH and SCLL registers. The master routines must be started in the main program.

The I²C hardware now begins checking the I²C-bus for its own slave address and General Call. If the General Call or the own slave address is detected, an interrupt is requested and STAT is loaded with the appropriate state information.

9.10.9 I²C interrupt service

When the I²C interrupt is entered, STAT contains a status code which identifies one of the 26 state services to be executed.

9.10.10 The state service routines

Each state routine is part of the I²C interrupt routine and handles one of the 26 states.

9.10.11 Adapting state services to an application

The state service examples show the typical actions that must be performed in response to the 26 I²C state codes. If one or more of the four I²C operating modes are not used, the associated state services can be omitted, as long as care is taken that the those states can never occur.

In an application, it may be desirable to implement some kind of time-out during I²C operations, in order to trap an inoperative bus or a lost service routine.

9.11 Software example

9.11.1 Initialization routine

Example to initialize I²C Interface as a Slave and/or Master.

- 1. Load ADR with own Slave Address, enable General Call recognition if needed.
- 2. Enable I²C interrupt.
- 3. Write 0x44 to CONSET to set the I2EN and AA bits, enabling Slave functions. For Master only functions, write 0x40 to CONSET.

9.11.2 Start Master Transmit function

Begin a Master Transmit operation by setting up the buffer, pointer, and data count, then initiating a START.

1. Initialize Master data counter.

Chapter 9: LPC11Axx I2C-bus interface

- 2. Set up the Slave Address to which data will be transmitted, and add the Write bit.
- 3. Write 0x20 to CONSET to set the STA bit.
- 4. Set up data to be transmitted in Master Transmit buffer.
- 5. Initialize the Master data counter to match the length of the message being sent.
- 6. Exit

9.11.3 Start Master Receive function

Begin a Master Receive operation by setting up the buffer, pointer, and data count, then initiating a START.

- 1. Initialize Master data counter.
- 2. Set up the Slave Address to which data will be transmitted, and add the Read bit.
- Write 0x20 to CONSET to set the STA bit.
- 4. Set up the Master Receive buffer.
- 5. Initialize the Master data counter to match the length of the message to be received.
- 6. Exit

9.11.4 I²C interrupt routine

Determine the I²C state and which state routine will be used to handle it.

- 1. Read the I²C status from STA.
- 2. Use the status value to branch to one of 26 possible state routines.

9.11.5 Non mode specific states

9.11.5.1 State: 0x00

Bus Error. Enter not addressed Slave mode and release bus.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.5.2 Master States

State 08 and State 10 are for both Master Transmit and Master Receive modes. The R/W bit decides whether the next state is within Master Transmit mode or Master Receive mode.

9.11.5.3 State: 0x08

A START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to DAT.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Master Transmit mode data buffer.

Chapter 9: LPC11Axx I2C-bus interface

- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

9.11.5.4 State: 0x10

A Repeated START condition has been transmitted. The Slave Address + R/W bit will be transmitted, an ACK bit will be received.

- 1. Write Slave Address with R/W bit to DAT.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Master Transmit mode data buffer.
- 5. Set up Master Receive mode data buffer.
- 6. Initialize Master data counter.
- 7. Exit

9.11.6 Master Transmitter states

9.11.6.1 State: 0x18

Previous state was State 8 or State 10, Slave Address + Write has been transmitted, ACK has been received. The first data byte will be transmitted, an ACK bit will be received.

- 1. Load DAT with first data byte from Master Transmit buffer.
- 2. Write 0x04 to CONSET to set the AA bit.
- Write 0x08 to CONCLR to clear the SI flag.
- 4. Increment Master Transmit buffer pointer.
- 5. Exit

9.11.6.2 State: 0x20

Slave Address + Write has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.6.3 State: 0x28

Data has been transmitted, ACK has been received. If the transmitted data was the last data byte then transmit a STOP condition, otherwise transmit the next data byte.

- 1. Decrement the Master data counter, skip to step 5 if not the last data byte.
- Write 0x14 to CONSET to set the STO and AA bits.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Exit
- 5. Load DAT with next data byte from Master Transmit buffer.

Chapter 9: LPC11Axx I2C-bus interface

- Write 0x04 to CONSET to set the AA bit.
- 7. Write 0x08 to CONCLR to clear the SI flag.
- 8. Increment Master Transmit buffer pointer
- 9. Exit

9.11.6.4 State: 0x30

Data has been transmitted. NOT ACK received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.6.5 State: 0x38

Arbitration has been lost during Slave Address + Write or data. The bus has been released and not addressed Slave mode is entered. A new START condition will be transmitted when the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.7 Master Receive states

9.11.7.1 State: 0x40

Previous state was State 08 or State 10. Slave Address + Read has been transmitted, ACK has been received. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.7.2 State: 0x48

Slave Address + Read has been transmitted, NOT ACK has been received. A STOP condition will be transmitted.

- 1. Write 0x14 to CONSET to set the STO and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.7.3 State: 0x50

Data has been received, ACK has been returned. Data will be read from DAT. Additional data will be received. If this is the last data byte then NOT ACK will be returned, otherwise ACK will be returned.

- 1. Read data byte from DAT into Master Receive buffer.
- 2. Decrement the Master data counter, skip to step 5 if not the last data byte.
- Write 0x0C to CONCLR to clear the SI flag and the AA bit.

Chapter 9: LPC11Axx I2C-bus interface

- 4. Exit
- 5. Write 0x04 to CONSET to set the AA bit.
- 6. Write 0x08 to CONCLR to clear the SI flag.
- 7. Increment Master Receive buffer pointer
- 8. Exit

9.11.7.4 State: 0x58

Data has been received, NOT ACK has been returned. Data will be read from DAT. A STOP condition will be transmitted.

- 1. Read data byte from DAT into Master Receive buffer.
- 2. Write 0x14 to CONSET to set the STO and AA bits.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Exit

9.11.8 Slave Receiver states

9.11.8.1 State: 0x60

Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

9.11.8.2 State: 0x68

Arbitration has been lost in Slave Address and R/W bit as bus Master. Own Slave Address + Write has been received, ACK has been returned. Data will be received and ACK will be returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit.

9.11.8.3 State: 0x70

General call has been received, ACK has been returned. Data will be received and ACK returned.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.

Chapter 9: LPC11Axx I2C-bus interface

- 4. Initialize Slave data counter.
- 5. Exit

9.11.8.4 State: 0x78

Arbitration has been lost in Slave Address + R/W bit as bus Master. General call has been received and ACK has been returned. Data will be received and ACK returned. STA is set to restart Master mode after the bus is free again.

- 1. Write 0x24 to CONSET to set the STA and AA bits.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Set up Slave Receive mode data buffer.
- 4. Initialize Slave data counter.
- 5. Exit

9.11.8.5 State: 0x80

Previously addressed with own Slave Address. Data has been received and ACK has been returned. Additional data will be read.

- 1. Read data byte from DAT into the Slave Receive buffer.
- 2. Decrement the Slave data counter, skip to step 5 if not the last data byte.
- 3. Write 0x0C to CONCLR to clear the SI flag and the AA bit.
- 4. Exit.
- 5. Write 0x04 to CONSET to set the AA bit.
- 6. Write 0x08 to CONCLR to clear the SI flag.
- 7. Increment Slave Receive buffer pointer.
- 8. Exit

9.11.8.6 State: 0x88

Previously addressed with own Slave Address. Data has been received and NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.8.7 State: 0x90

Previously addressed with General Call. Data has been received, ACK has been returned. Received data will be saved. Only the first data byte will be received with ACK. Additional data will be received with NOT ACK.

- 1. Read data byte from DAT into the Slave Receive buffer.
- 2. Write 0x0C to CONCLR to clear the SI flag and the AA bit.
- 3. Exit

User manual

Chapter 9: LPC11Axx I2C-bus interface

9.11.8.8 State: 0x98

Previously addressed with General Call. Data has been received, NOT ACK has been returned. Received data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.8.9 State: 0xA0

A STOP condition or Repeated START has been received, while still addressed as a Slave. Data will not be saved. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

9.11.9 Slave Transmitter states

9.11.9.1 State: 0xA8

Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received.

- 1. Load DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

9.11.9.2 State: 0xB0

Arbitration lost in Slave Address and R/W bit as bus Master. Own Slave Address + Read has been received, ACK has been returned. Data will be transmitted, ACK bit will be received. STA is set to restart Master mode after the bus is free again.

- 1. Load DAT from Slave Transmit buffer with first data byte.
- 2. Write 0x24 to CONSET to set the STA and AA bits.
- Write 0x08 to CONCLR to clear the SI flag.
- 4. Set up Slave Transmit mode data buffer.
- 5. Increment Slave Transmit buffer pointer.
- 6. Exit

9.11.9.3 State: 0xB8

Data has been transmitted, ACK has been received. Data will be transmitted, ACK bit will be received.

1. Load DAT from Slave Transmit buffer with data byte.

Chapter 9: LPC11Axx I2C-bus interface

- 2. Write 0x04 to CONSET to set the AA bit.
- 3. Write 0x08 to CONCLR to clear the SI flag.
- 4. Increment Slave Transmit buffer pointer.
- 5. Exit

9.11.9.4 State: 0xC0

Data has been transmitted, NOT ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit.

9.11.9.5 State: 0xC8

The last data byte has been transmitted, ACK has been received. Not addressed Slave mode is entered.

- 1. Write 0x04 to CONSET to set the AA bit.
- 2. Write 0x08 to CONCLR to clear the SI flag.
- 3. Exit

UM10527

Chapter 10: LPC11Axx SPI/SSP

Rev. 5 — 21 January 2013

User manual

10.1 How to read this chapter

The SPI interfaces are identical on all LPC11Axx parts. The SPI1 interface is not available on the WLCSP20 packages.

10.2 Features

- Compatible with Motorola SPI, 4-wire TI SSI, and National Semiconductor Microwire buses.
- Synchronous Serial Communication.
- Supports master or slave operation.
- Eight-frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.

10.3 General description

The SPI/SSP is a Synchronous Serial Port (SSP) controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. Data transfers are in principle full duplex, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice it is often the case that only one of these data flows carries meaningful data.

The LPC11Axx has SPI/Synchronous Serial Port controller.

Chapter 10: LPC11Axx SPI/SSP

10.4 Pin description

Table 141. SSP pin descriptions

Pin	Туре		ice pin function		Pin description
name		SPI	SSI	Microwire	•
SCK0	I/O	SCK	CLK	SK	Serial Clock. SCK/CLK/SK is a clock signal used to synchronize the transfer of data. It is driven by the master and received by the slave. When SPI/SSP interface is used, the clock is programmable to be active-high or active-low, otherwise it is always active-high. SCK only switches during a data transfer. Any other time, the SPI/SSP interface either holds it in its inactive state or does not drive it (leaves it in high-impedance state).
SSEL0	I/O	SSEL	FS	CS	Frame Sync/Slave Select. When the SPI/SSP interface is a bus master, it drives this signal to an active state before the start of serial data and then releases it to an inactive state after the data has been sent. The active state of this signal can be high or low depending upon the selected bus and mode. When the SPI/SSP interface is a bus slave, this signal qualifies the presence of data from the Master according to the protocol in use. When there is just one bus master and one bus slave, the Frame Sync or Slave Select signal from the Master can be connected directly to the slave's corresponding input. When there is more than one slave on the bus, further qualification of their Frame Select/Slave Select inputs will typically be necessary to prevent more than one slave from responding to a transfer.
MISO0	I/O	MISO	DR(M) DX(S)	SI(M) SO(S)	Master In Slave Out. The MISO signal transfers serial data from the slave to the master. When the SPI/SSP is a slave, serial data is output on this signal. When the SPI/SSP is a master, it clocks in serial data from this signal. When the SPI/SSP is a slave and is not selected by FS/SSEL, it does not drive this signal (leaves it in high-impedance state).
MOSI0	I/O	MOSI	DX(M) DR(S)	SO(M) SI(S)	Master Out Slave In. The MOSI signal transfers serial data from the master to the slave. When the SPI/SSP is a master, it outputs serial data on this signal. When the SPI/SSP is a slave, it clocks in serial data from this signal.

Remark: Most or all of these signals can be assigned to a choice of pins. In order to use an SPI/SSP controller, each of its signals must be selected in one and only one IOCON register. See Section 6.4.1.

Chapter 10: LPC11Axx SPI/SSP

10.5 Clocking and power control

The SSP block is gated by the SYSAHBCLKCTRL register (see <u>Table 20</u>). The peripheral SSP clock, which is used by the SSP clock divider and prescaler, is controlled by the SSP0CLKDIV register (see <u>Section 3.5.16</u>).

The SPI0/1_PCLK clocks can be disabled in SSP0/1CLKDIV registers (see Section 3.5.16), and the SSP block can be disabled in the SYSAHBCLKCTRL register (Table 20) for power savings.

10.6 Register description

The register addresses of the SSP controller are shown in Table 142.

Table 142. Register overview: SPI0 (base address 0x4004 0000)

	_			
Name	Access	Address offset	Description	Reset Value ^[1]
CR0	R/W	0x000	Control Register 0. Selects the serial clock rate, bus type, and data size.	0
CR1	R/W	0x004	Control Register 1. Selects master/slave and other modes.	0
DR	R/W	0x008	Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO.	0
SR	RO	0x00C	Status Register	-
CPSR	R/W	0x010	Clock Prescale Register	0
IMSC	R/W	0x014	Interrupt Mask Set and Clear Register	0
RIS	R/W	0x018	Raw Interrupt Status Register	-
MIS	R/W	0x01C	Masked Interrupt Status Register	0
ICR	R/W	0x020	Interrupt Clear Register	NA

^[1]Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

10.6.1 SPI/SSP Control Register 0

This register controls the basic operation of the SPI/SSP controller.

Table 143: SPI/SSP Control Register 0 (CR0 - address 0x4004 0000 (SSP0)) bit description

Chapter 10: LPC11Axx SPI/SSP

Bit	Symbol	Value	Description	Reset Value
3:0	DSS		Data Size Select. This field controls the number of bits transferred in each frame. Values 0000-0010 are not supported and should not be used.	0000
		0x3	4-bit transfer	
		0x4	5-bit transfer	
		0x4	6-bit transfer	
		0x6	7-bit transfer	
		0x7	8-bit transfer	
		0x8	9-bit transfer	
		0x9	10-bit transfer	
		0xA	11-bit transfer	
		0xB	12-bit transfer	
		0xC	13-bit transfer	
		0xD	14-bit transfer	
		0xE	15-bit transfer	
		0xF	16-bit transfer	
5:4	FRF		Frame Format.	00
		0x0	SPI	
		0x1	TI	
		0x2	Microwire	
		0x3	This combination is not supported and should not be used.	
6	CPOL		Clock Out Polarity. This bit is only used in SPI mode.	0
		0	SPI controller maintains the bus clock low between frames.	
		1	SPI controller maintains the bus clock high between frames.	
7	CPHA		Clock Out Phase. This bit is only used in SPI mode.	0
		0	SPI controller captures serial data on the first clock transition of the frame, that is, the transition away from the inter-frame state of the clock line.	
		1	SPI controller captures serial data on the second clock transition of the frame, that is, the transition back to the inter-frame state of the clock line.	
15:8	SCR		Serial Clock Rate. The number of prescaler-output clocks per bit on the bus, minus one. Given that CPSDVSR is the prescale divider, and the APB clock PCLK clocks the prescaler, the bit frequency is PCLK / (CPSDVSR \times [SCR+1]).	0x00
31:9	-		Reserved	-

10.6.2 SPI/SSP0 Control Register 1

This register controls certain aspects of the operation of the SPI/SSP controller.

Table 144: SPI/SSP Control Register 1 (CR1 - address 0x4004 0004 (SSP0) (SSP1)) bit description

Chapter 10: LPC11Axx SPI/SSP

	acscription			
Bit	Symbol	Value	Description	Reset Value
0	LBM		Loop Back Mode.	0
		 During normal operation. 	During normal operation.	
		1	Serial input is taken from the serial output (MOSI or MISO) rather than the serial input pin (MISO or MOSI respectively).	
1	SSE		SSP Enable.	0
		0	The SSP controller is disabled.	
		1	The SSP controller will interact with other devices on the serial bus. Software should write the appropriate control information to the other SPI/SSP registers and interrupt controller registers, before setting this bit.	
2	MS	MS Master/Slave Mo SSE bit is 0.	Master/Slave Mode.This bit can only be written when the SSE bit is 0.	0
		0	The SSP controller acts as a master on the bus, driving the SCK, MOSI, and SSEL lines and receiving the MISO line.	
		1	The SSP controller acts as a slave on the bus, driving MISO line and receiving SCK, MOSI, and SSEL lines.	
3	SOD		Slave Output Disable. This bit is relevant only in slave mode (MS = 1). If it is 1, this blocks this SSP controller from driving the transmit data line (MISO).	0
7:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31:8	-		Reserved	-
		· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·

10.6.3 SPI/SSP Data Register

Software can write data to be transmitted to this register and read data that has been received.

Chapter 10: LPC11Axx SPI/SSP

Table 145: SPI/SSP Data Register (DR - address 0x4004 0008 (SSP0)) bit description

Bit	Symbol	Description	Reset Value
15:0	DATA	Write: software can write data to be sent in a future frame to this register whenever the TNF bit in the Status register is 1, indicating that the Tx FIFO is not full. If the Tx FIFO was previously empty and the SSP controller is not busy on the bus, transmission of the data will begin immediately. Otherwise the data written to this register will be sent as soon as all previous data has been sent (and received). If the data length is less than 16 bit, software must right-justify the data written to this register.	0x0000
		Read: software can read data from this register whenever the RNE bit in the Status register is 1, indicating that the Rx FIFO is not empty. When software reads this register, the SSP controller returns data from the least recent frame in the Rx FIFO. If the data length is less than 16 bit, the data is right-justified in this field with higher order bits filled with 0s.	
31:16	-	Reserved	-

10.6.4 SPI/SSP Status Register

This read-only register reflects the current status of the SSP controller.

Table 146: SPI/SSP Status Register (SR - address 0x4004 000C (SSP0)) bit description

Bit	Symbol	Description	Reset Value
0	TFE	Transmit FIFO Empty. This bit is 1 is the Transmit FIFO is empty, 0 if not.	1
1	TNF	Transmit FIFO Not Full. This bit is 0 if the Tx FIFO is full, 1 if not.	1
2	RNE	Receive FIFO Not Empty. This bit is 0 if the Receive FIFO is empty, 1 if not.	0
3	RFF	Receive FIFO Full. This bit is 1 if the Receive FIFO is full, 0 if not.	0
4	BSY	Busy. This bit is 0 if the SSP controller is idle, 1 if it is currently sending/receiving a frame and/or the Tx FIFO is not empty.	0
31:5	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

10.6.5 SPI/SSP Clock Prescale Register

This register controls the factor by which the Prescaler divides the SSP peripheral clock SPI_PCLK to yield the prescaler clock that is, in turn, divided by the SCR factor in the SSPCR0 registers, to determine the bit clock.

Table 147: SPI/SSP Clock Prescale Register (CPSR - address 0x4004 0010 (SSP0) (SSP1)) bit description

Bit	Symbol	Description	Reset Value
7:0	CPSDVSR	This even value between 2 and 254, by which SPI_PCLK is divided to yield the prescaler output clock. Bit 0 always reads as 0.	0
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 10: LPC11Axx SPI/SSP

Important: the SSPnCPSR value must be properly initialized, or the SSP controller will not be able to transmit data correctly.

In Slave mode, the SSP clock rate provided by the master must not exceed 1/12 of the SSP peripheral clock selected in <u>Section 3.5.16</u> or <u>Section 3.5.18</u>. The content of the SSPnCPSR register is not relevant.

In master mode, CPSDVSR_{min} = 2 or larger (even numbers only).

10.6.6 SPI/SSP Interrupt Mask Set/Clear Register

This register controls whether each of the four possible interrupt conditions in the SSP controller are enabled. Note that ARM (the designer of this peripheral) uses the word "masked" in the opposite sense from classic computer terminology, in which "masked" meant "disabled". ARM uses the word "masked" to mean "enabled". To avoid confusion, this chapter does not use the word "masked".

Table 148: SPI/SSP Interrupt Mask Set/Clear register (IMSC - address 0x4004 0014 (SSP0)) bit description

Bit	Symbol	Description	Reset Value
0	RORIM	Software should set this bit to enable interrupt when a Receive Overrun occurs, that is, when the Rx FIFO is full and another frame is completely received. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0
1	RTIM	Software should set this bit to enable interrupt when a Receive Timeout condition occurs. A Receive Timeout occurs when the Rx FIFO is not empty, and no has not been read for a "timeout period".	0
2	RXIM	Software should set this bit to enable interrupt when the Rx FIFO is at least half full.	0
3	TXIM	Software should set this bit to enable interrupt when the Tx FIFO is at least half empty.	0
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

10.6.7 SPI/SSP Raw Interrupt Status Register

This read-only register contains a 1 for each interrupt condition that is asserted, regardless of whether or not the interrupt is enabled in the SSPIMSC registers.

Table 149: SPI/SSP Raw Interrupt Status register (RIS - address 0x4004 0018 (SSP0) (SSP1)) bit description

Bit	Symbol	Description	Reset Value
0	RORRIS	This bit is 1 if another frame was completely received while the RxFIFO was full. The ARM spec implies that the preceding frame data is overwritten by the new frame data when this occurs.	0
1	RTRIS	This bit is 1 if the Rx FIFO is not empty, and has not been read for a "timeout period".	0

Chapter 10: LPC11Axx SPI/SSP

Table 149: SPI/SSP Raw Interrupt Status register (RIS - address 0x4004 0018 (SSP0) (SSP1)) bit description

		•	
Bit	Symbol	Description	Reset Value
2	RXRIS	This bit is 1 if the Rx FIFO is at least half full.	0
3	TXRIS	This bit is 1 if the Tx FIFO is at least half empty.	1
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

10.6.8 SPI/SSP Masked Interrupt Status Register

This read-only register contains a 1 for each interrupt condition that is asserted and enabled in the SSPIMSC registers. When an SSP interrupt occurs, the interrupt service routine should read this register to determine the causes of the interrupt.

Table 150: SPI/SSP Masked Interrupt Status register (MIS - address 0x4004 001C (SSP0)) bit description

Bit	Symbol	Description	Reset Value
0	RORMIS	This bit is 1 if another frame was completely received while the RxFIFO was full, and this interrupt is enabled.	0
1	RTMIS	This bit is 1 if the Rx FIFO is not empty, has not been read for a "timeout period", and this interrupt is enabled.	0
2	RXMIS	This bit is 1 if the Rx FIFO is at least half full, and this interrupt is enabled.	0
3	TXMIS	This bit is 1 if the Tx FIFO is at least half empty, and this interrupt is enabled.	0
31:4	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

10.6.9 SPI/SSP Interrupt Clear Register

Software can write one or more ones to this write-only register, to clear the corresponding interrupt conditions in the SSP controller. Note that the other two interrupt conditions can be cleared by writing or reading the appropriate FIFO or disabled by clearing the corresponding bit in SSPIMSC registers.

Table 151: SPI/SSP interrupt Clear Register (ICR - address 0x4004 0020 (SSP0)) bit description

Bit	Symbol	Description	Reset Value
0	RORIC	Writing a 1 to this bit clears the "frame was received when RxFIFO was full" interrupt.	NA
1	RTIC	Writing a 1 to this bit clears the "Rx FIFO was not empty and has not been read for a timeout period" interrupt.	NA
31:2	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 10: LPC11Axx SPI/SSP

10.7 Functional description

10.7.1 Texas Instruments synchronous serial frame format

<u>Figure 35</u> shows the 4-wire Texas Instruments synchronous serial frame format supported by the SSP module.

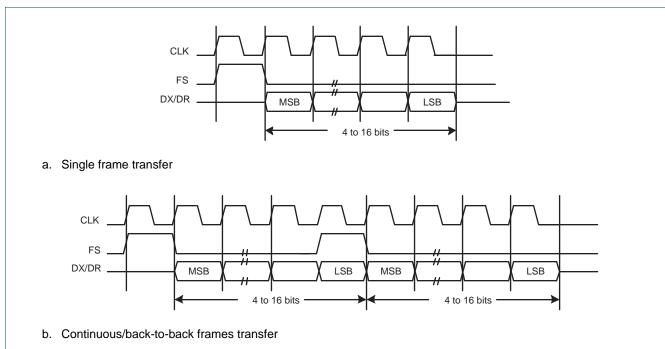


Fig 35. Texas Instruments Synchronous Serial Frame Format: a) Single and b) Continuous/back-to-back Two Frames Transfer

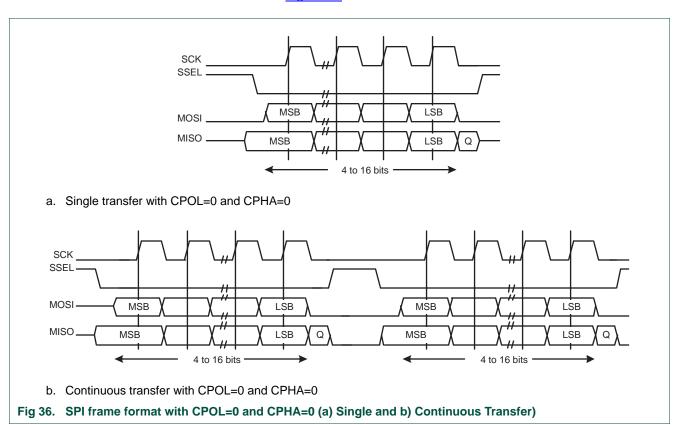
For device configured as a master in this mode, CLK and FS are forced LOW, and the transmit data line DX is in 3-state mode whenever the SSP is idle. Once the bottom entry of the transmit FIFO contains data, FS is pulsed HIGH for one CLK period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of CLK, the MSB of the 4-bit to 16-bit data frame is shifted out on the DX pin. Likewise, the MSB of the received data is shifted onto the DR pin by the off-chip serial slave device.

Both the SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each CLK. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of CLK after the LSB has been latched.

10.7.2 SPI frame format

The SPI interface is a four-wire interface where the SSEL signal behaves as a slave select. The main feature of the SPI format is that the inactive state and phase of the SCK signal are programmable through the CPOL and CPHA bits within the SSPCR0 control register.

Chapter 10: LPC11Axx SPI/SSP


10.7.2.1 Clock Polarity (CPOL) and Clock Phase (CPHA) control

When the CPOL clock polarity control bit is LOW, it produces a steady state low value on the SCK pin. If the CPOL clock polarity control bit is HIGH, a steady state high value is placed on the CLK pin when data is not being transferred.

The CPHA control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the CPHA phase control bit is LOW, data is captured on the first clock edge transition. If the CPHA clock phase control bit is HIGH, data is captured on the second clock edge transition.

10.7.2.2 SPI format with CPOL=0,CPHA=0

Single and continuous transmission signal sequences for SPI format with CPOL = 0, CPHA = 0 are shown in Figure 36.

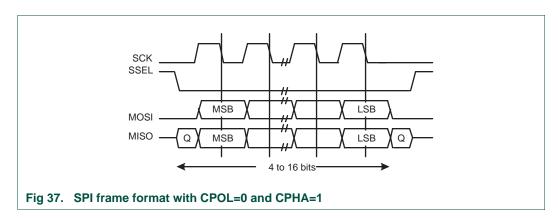
In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SPI/SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. This causes slave data to be enabled onto the MISO input line of the master. Master's MOSI is enabled.

Chapter 10: LPC11Axx SPI/SSP

One half SCK period later, valid master data is transferred to the MOSI pin. Now that both the master and slave data have been set, the SCK master clock pin goes HIGH after one further half SCK period.


The data is captured on the rising and propagated on the falling edges of the SCK signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

10.7.2.3 SPI format with CPOL=0,CPHA=1

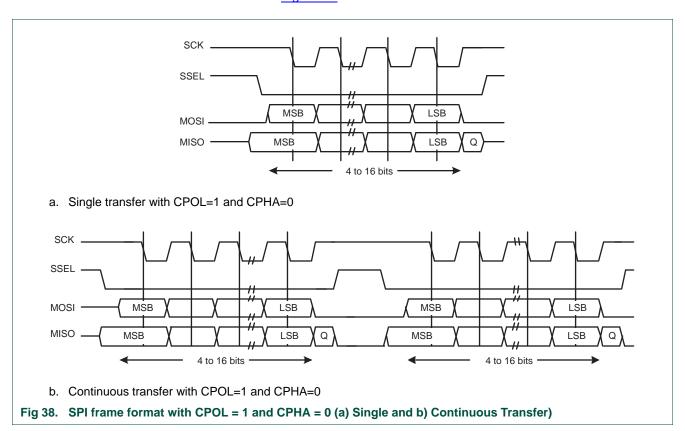
The transfer signal sequence for SPI format with CPOL = 0, CPHA = 1 is shown in Figure 37, which covers both single and continuous transfers.

In this configuration, during idle periods:

- The CLK signal is forced LOW.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SPI/SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI pin is enabled. After a further one half SCK period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SCK is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SCK signal.


In the case of a single word transfer, after all bits have been transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

Chapter 10: LPC11Axx SPI/SSP

For continuous back-to-back transfers, the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

10.7.2.4 SPI format with CPOL = 1,CPHA = 0

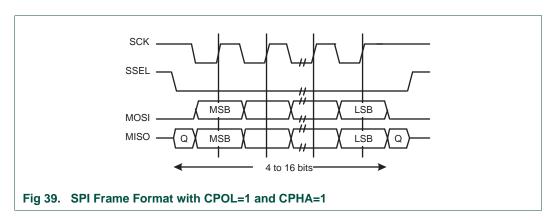
Single and continuous transmission signal sequences for SPI format with CPOL=1, CPHA=0 are shown in Figure 38.

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.

If the SPI/SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW, which causes slave data to be immediately transferred onto the MISO line of the master. Master's MOSI pin is enabled.

One half period later, valid master data is transferred to the MOSI line. Now that both the master and slave data have been set, the SCK master clock pin becomes LOW after one further half SCK period. This means that data is captured on the falling edges and be propagated on the rising edges of the SCK signal.


In the case of a single word transmission, after all bits of the data word are transferred, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured.

Chapter 10: LPC11Axx SPI/SSP

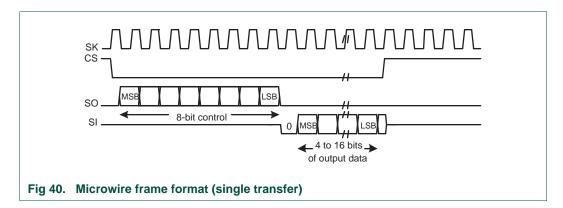
However, in the case of continuous back-to-back transmissions, the SSEL signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the CPHA bit is logic zero. Therefore the master device must raise the SSEL pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSEL pin is returned to its idle state one SCK period after the last bit has been captured.

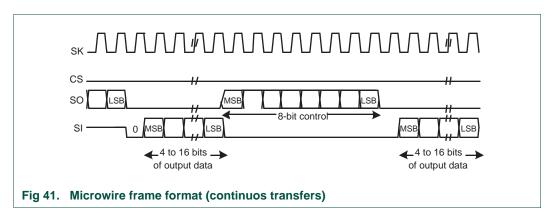
10.7.2.5 SPI format with CPOL = 1,CPHA = 1

The transfer signal sequence for SPI format with CPOL = 1, CPHA = 1 is shown in Figure 39, which covers both single and continuous transfers.

In this configuration, during idle periods:

- The CLK signal is forced HIGH.
- SSEL is forced HIGH.
- The transmit MOSI/MISO pad is in high impedance.


If the SPI/SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSEL master signal being driven LOW. Master's MOSI is enabled. After a further one half SCK period, both master and slave data are enabled onto their respective transmission lines. At the same time, the SCK is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SCK signal.


After all bits have been transferred, in the case of a single word transmission, the SSEL line is returned to its idle HIGH state one SCK period after the last bit has been captured. For continuous back-to-back transmissions, the SSEL pins remains in its active LOW state, until the final bit of the last word has been captured, and then returns to its idle state as described above. In general, for continuous back-to-back transfers the SSEL pin is held LOW between successive data words and termination is the same as that of the single word transfer.

Chapter 10: LPC11Axx SPI/SSP

10.7.3 National Semiconductor Microwire Format

<u>Figure 40</u> shows the Microwire frame format for a single frame. <u>Figure 41</u> shows the same format when back-to-back frames are transmitted.

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SPI/SSP to the off-chip slave device. During this transmission, no incoming data is received by the SPI/SSP. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bit in length, making the total frame length anywhere from 13 to 25 bits.

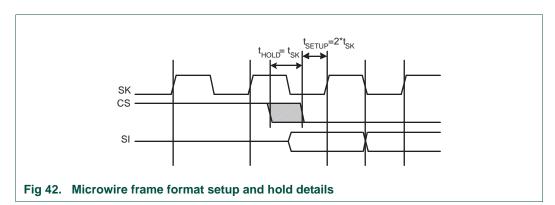
In this configuration, during idle periods:

- The SK signal is forced LOW.
- · CS is forced HIGH.
- The transmit data line SO is arbitrarily forced LOW.

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of CS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SO pin. CS remains LOW for the duration of the frame transmission. The SI pin remains tristated during this transmission.

Chapter 10: LPC11Axx SPI/SSP

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SK. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SPI/SSP. Each bit is driven onto SI line on the falling edge of SK. The SPI/SSP in turn latches each bit on the rising edge of SK. At the end of the frame, for single transfers, the CS signal is pulled HIGH one clock period after the last bit has been latched in the receive serial shifter, that causes the data to be transferred to the receive FIFO.


Note: The off-chip slave device can tristate the receive line either on the falling edge of SK after the LSB has been latched by the receive shiftier, or when the CS pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the CS line is continuously asserted (held LOW) and transmission of data occurs back to back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge SK, after the LSB of the frame has been latched into the SPI/SSP.

10.7.3.1 Setup and hold time requirements on CS with respect to SK in Microwire mode

In the Microwire mode, the SPI/SSP slave samples the first bit of receive data on the rising edge of SK after CS has gone LOW. Masters that drive a free-running SK must ensure that the CS signal has sufficient setup and hold margins with respect to the rising edge of SK.

<u>Figure 42</u> illustrates these setup and hold time requirements. With respect to the SK rising edge on which the first bit of receive data is to be sampled by the SPI/SSP slave, CS must have a setup of at least two times the period of SK on which the SPI/SSP operates. With respect to the SK rising edge previous to this edge, CS must have a hold of at least one SK period.

UM10527

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Rev. 5 — 21 January 2013

User manual

11.1 How to read this chapter

The 16-bit timer blocks are identical for allLPC11Axx parts, though the number of inputs and outputs varies.

11.2 Basic configuration

The CT16B0/1 counter/timers are configured through the following registers:

- Pins: Configure the CT16B0/1 pins in the IOCON register block (Table 81).
- Power: In the SYSAHBCLKCTRL register, set bit 7 and 8 in <u>Table 20</u>.
- The peripheral clock is determined by the system clock (see Table 19).

11.3 Features

- Two 16-bit counter/timers with a programmable 16-bit prescaler.
- Counter or timer operation.
- 16-bit capture channels can take a snapshot of the timer value when an input signal transitions. Such a capture event can optionally generate an interrupt.
- Four 16-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- External outputs controlled by match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- For each timer, up to four match registers can be configured as "PWM", which allows
 the use of up to three match outputs as single edge controlled PWM outputs.
- The timer and prescaler can be cleared on a designated capture event. This permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.

11.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- Free-running timer
- Pulse Width Modulator via match outputs

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

11.5 Description

Each counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes capture inputs to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, match registers can be used to provide a single-edge controlled PWM output on the match output pins. It is best to use a match register that is not pinned out to control the PWM cycle length.

The following pages describe 4 MATj outputs and 3 CAPj inputs, but these may not all be connected to pins.

Remark: 16-bit counter/timer0 (CT16B0) and 16-bit counter/timer1 (CT16B1) are functionally identical except for the peripheral base address and I/O multiplexing.

11.6 Pin description

Table 152 gives a brief summary of each of the counter/timer related pins.

Table 152. Counter/timer pin description

Pin	Туре	Description
CT16B0_CAPj CT16B1_CAPj	Input	Capture Signals: A transition on a pin or on-chip signal can be configured to load the corresponding Capture Register with the value in the counter/timer and optionally generate an interrupt.
		The counter/timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see Section 11.7.11.
CT16B0_MATj CT16B1_MATj	Output	External Match Outputs of CT16B0/1: When a match register (MRj) equals the timer counter (TC), output 'j' can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control Register (PWMCON) control the functionality of these outputs.

11.7 Register description

The 16-bit counter/timers contain the registers shown in <u>Table 153</u>. "i" in "16Bi" can be 0 or 1, while "j" in "MATj" or "CAPj" can be 0 through 3. Address offsets other than those shown are reserved and should not be written. More detailed descriptions follow.

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 153. Register overview: 16-bit counter/timer CT16B0 (base address 0x4000 C000) and CT16B1 (base address 0x4001 0000)

Name	Access	Address offset	Description	Reset value[1]
IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TC	R/W	0x008	Timer Counter (TC). The 16-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
PC	R/W	0x010	Prescale Counter (PC). The 16-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
MR0	R/W	0x018	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT16i_MATj output (if any) when the TC matches MRj.	0
MR1	R/W	0x01C	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT16i_MATj output (if any) when the TC matches MRj.	0
MR2	R/W	0x020	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT16i_MATj output (if any) when the TC matches MRj.	0
MR3	R/W	0x024	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT16i_MATj output (if any) when the TC matches MRj.	0
CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
CR0	RO	0x02C	Capture Register. Each CRj register can be loaded with the value of TC when there is an event on its CT16Bi_CAPj input or internal signal.	0
CR1	RO	0x030	Capture Register. Each CRj register can be loaded with the value of TC when there is an event on its CT16Bi_CAPj input or internal signal.	0
CR2	RO	0x034	Capture Register. Each CRj register can be loaded with the value of TC when there is an event on its CT16Bi_CAPj input or internal signal.	0
CR3	RO	0x038	Capture Register. Each CRj register can be loaded with the value of TC when there is an event on its CT16Bi_CAPj input or internal signal.	0
EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT16Bi_MATj.	0
CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT16Bi_MATj.	0

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

11.7.1 Interrupt Registers (IR)

The Interrupt Registers (IR) include up to four bits for the match interrupts and four bits for the capture interrupt. If an interrupt is generated then the corresponding bit in the IR will be 1. Otherwise, the bit will be 0. Writing a1 to an IR bit clears the bit and thus the interrupt. Writing a zero has no effect.

Table 154. Interrupt Register (IR - address 0x4000 C000 (CT16B0) and 0x4001 0000) bit description

Bit	Symbol	Description	Reset value
0	MROINT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CR0INT	Interrupt flag for capture channel 0 event.	0
5	CR1INT	Interrupt flag for capture channel 1 event.	0
6	CR2INT	Interrupt flag for capture channel 2 event.	0
7	CR3INT	Interrupt flag for capture channel 3 event.	0
31:8	-	Reserved	-

11.7.2 Timer Control Register (TCR)

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 155. Timer Control Register (TCR, address 0x4000 C004 (CT16B0) and 0x4001 0004 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	C EN		Counter enable.	0
	0 The cou	The counters are disabled.		
		1	The Timer Counter and Prescale Counter are enabled for counting.	
1	CRST		Counter reset.	0
		0	Do nothing.	
		1	The Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	
31:2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

11.7.3 Timer Counter registers (TC)

The 16-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count, or when a selected edge occurs on an input signal. Unless it is reset before reaching its upper limit, the TC will count up through 0xFFFF and then wrap back to 0x0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 156: Timer counter registers (TC, address 0x4000 C008 (CT16B0) and 0x4001 0008 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	TC	Timer counter value.	0
31:16	-	Reserved.	-

11.7.4 Prescale Register (PR)

The 16-bit Prescale Register specifies the maximum value for the Prescale Counter.

Table 157: Prescale registers (PR, address 0x4000 C00C (CT16B0) and 0x4001 000C (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	PCVAL	Prescale value.	0
31:16	-	Reserved.	-

11.7.5 Prescale Counter register (PC)

The 16-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

Table 158: Prescale counter registers (PC, address 0x4000 C010 (CT16B0) and 0x4001 0010 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	PC	Prescale counter value.	0
31:16	-	Reserved.	-

11.7.6 Match Control Register (MCR)

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in Table 159.

Table 159. Match Control Register (MCR, address 0x4000 C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	MR0I		Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 159. Match Control Register (MCR, address 0x4000 C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit description ...continued

Bit	Symbol	Value	Description	Reset
				value
1	MR0R		Reset on MR0: the TC will be reset if MR0 matches it.	0
		1	Enabled	
		0	Disabled	
2	MR0S		Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		1	Enabled	
		0	Disabled	
3	MR1I		Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
4	MR1R		Reset on MR1: the TC will be reset if MR1 matches it.	0
		1	Enabled	
		0	Disabled	
5	MR1S		Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		1	Enabled	
		0	Disabled	
6	MR2I		Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
7	MR2R		Reset on MR2: the TC will be reset if MR2 matches it.	0
		1	Enabled	
		0	Disabled	
8	MR2S		Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		1	Enabled	
		0	Disabled	
9	MR3I		Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
10	MR3R		Reset on MR3: the TC will be reset if MR3 matches it.	0
		1	Enabled	
		0	Disabled	
11	MR3S		Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		1	Enabled	
		0	Disabled	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

11.7.7 Match Registers (MR0/1/2/3)

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

Table 160: Match registers (MR0 to 3, addresses 0x4000 C018 to 24 (CT16B0) and 0x4001 0018 to 24 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	MATCH	Timer counter match value.	0
31:16	-	Reserved.	-

11.7.8 Capture Control Register (CCR)

The Capture Control Register is used to control whether each Capture Register is loaded with the value in the Counter/timer when the corresponding capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the descriptions below, "i" represents the Timer number, 0 or 1.

Table 161. Capture Control Register (CCR, address 0x4000 C028 (CT16B0) and 0x4001 0028 (CT16B1)) bit description

		•		
Bit	Symbol	Value	Description	Reset value
0	CAP0RE		Capture on CT16Bi_CAP0 rising edge: a sequence of 0 then 1 on CT16Bi_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
1	CAP0FE		Capture on CT16Bi_CAP0 falling edge: a sequence of 1 then 0 on CT16Bi_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
2	CAP0I		Interrupt on CT16Bi_CAP0 event: a CR0 load due to a CT16Bi_CAP0 event will generate an interrupt.	0
		1 Enabled	Enabled	
		0	Disabled	
3	CAP1RE		Capture on CT16Bi_CAP1 rising edge: a sequence of 0 then 1 on CT16Bi_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
4	CAP1FE		Capture on CT16Bi_CAP1 falling edge: a sequence of 1 then 0 on CT16Bi_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 161. Capture Control Register (CCR, address 0x4000 C028 (CT16B0) and 0x4001 0028 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
5	CAP1I		Interrupt on CT16Bi_CAP1 event: a CR1 load due to a CT16Bi_CAP1 event will generate an interrupt.	0
		1	Enabled	
		0	Disabled	
6	CAP2RE		Capture on CT16Bi_CAP2 rising edge: a sequence of 0 then 1 on CT16Bi_CAP2 will cause CR2 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
7	CAP2FE		Capture on CT16Bi_CAP2 falling edge: a sequence of 1 then 0 on CT16Bi_CAP2 will cause CR2 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
8	CAP2I		Interrupt on CT16Bi_CAP2 event: a CR2 load due to a CT16Bi_CAP2 event will generate an interrupt.	0
		1	Enabled	
		0	Disabled	
9	CAP3RE		Capture on comparator output rising edge: a sequence of 0 then 1 on comparator output will cause CR3 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
10	CAP3FE		Capture on comparator output falling edge: a sequence of 1 then 0 on comparator output will cause CR3 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
11	CAP3I		Interrupt on comparator output event: a CR3 load due to a comparator output event will generate an interrupt.	0
		1	Enabled	
		0	Disabled	
31:12	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

11.7.9 Capture Registers (CR0/1/2/3)

Each Capture register is associated with a signal and may be loaded with the Timer Counter value when a specified event occurs on that signal. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 162. Capture registers (CR0 to 3, addresses 0x4000 C02C to 0x4000 C034 (CT16B0), CR0 to 3, addresses 0x4001 002C to 0x4001 C034 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
15:0	CAP	Timer counter capture value.	0
31:16	-	Reserved.	-

11.7.10 External Match Register (EMR)

The External Match Register provides both control and status of the external match channels and external match pins CT16Bi_MATj.

If the match outputs are configured as PWM output in the PWMCON registers (<u>Section 11.7.12</u>), the function of the external match registers is determined by the PWM rules (<u>Section 11.7.13</u> "Rules for single edge controlled PWMs" on page 183).

Table 163. External Match Register (EMR, address 0x4000 C03C (CT16B0) and 0x4001 003C (CT16B1)) bit description

		iption		
Bit	Symbol	Value	Description	Reset value
0	EM0		External Match 0. This bit reflects the state of output CT16Bi_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT16Bi_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
1	EM1		External Match 1. This bit reflects the state of output CT16Bi_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT16Bi_MAT1 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
2	EM2		External Match 2. This bit reflects the state of output match channel 2, whether or not this output is connected to its pin. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output. Note that on counter/timer 0 this match channel is not pinned out. This bit is driven to the CT16Bi_MAT2 pin if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
3	EM3		External Match 3. This bit reflects the state of output CT16Bi_MAT3, whether or not this output is connected to a pin. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output. This bit is driven to the CT16Bi_MAT3 pin if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
5:4	EMC0	CO External Match Control 0. Determines the functionality of External Match	External Match Control 0. Determines the functionality of External Match 0.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT16Bi_MATj pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bi_MATj pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Table 163. External Match Register (EMR, address 0x4000 C03C (CT16B0) and 0x4001 003C (CT16B1)) bit description

	acsor																			
Bit	Symbol	Value	Description	Reset value																
7:6	EMC1	EMC1		External Match Control 1. Determines the functionality of External Match 1.	00															
						0x0	Do Nothing.													
			0x1	Clear the corresponding External Match bit/output to 0 (CT16Bi_MATj pin is LOW if pinned out).																
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bi_MATj pin is HIGH if pinned out).																	
		0x3	Toggle the corresponding External Match bit/output.																	
9:8	EMC2	EMC2		External Match Control 2. Determines the functionality of External Match 2.	00															
						0x0	Do Nothing.													
																			0x1	Clear the corresponding External Match bit/output to 0 (CT16Bi_MATj pin is LOW if pinned out).
					0x3	Toggle the corresponding External Match bit/output.														
11:10	EMC3		External Match Control 3. Determines the functionality of External Match 3.	00																
		0x0	Do Nothing.																	
		Ox1 Clear the corresponding External Match bit/output to 0 (CT16Bi_MAT pinned out).	Clear the corresponding External Match bit/output to 0 (CT16Bi_MATj pin is LOW if pinned out).																	
		0x2	Set the corresponding External Match bit/output to 1 (CT16Bi_MATj pin is HIGH if pinned out).																	
		0x3	Toggle the corresponding External Match bit/output.																	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA																

Table 164. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
00	Do Nothing.
01	Clear the corresponding External Match bit/output to 0 (CT16Bi_MATj pin is LOW if pinned out).
10	Set the corresponding External Match bit/output to 1 (CT16Bi_MATj pin is HIGH if pinned out).
11	Toggle the corresponding External Match bit/output.

11.7.11 Count Control Register (CTCR)

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the signal and edge(s) for counting.

When Counter Mode is selected in this register, the signal selected by bits 3:2 is sampled on every rising edge of the PCLK clock. By comparing two consecutive samples of this signal, rising and falling edges on the signal are detected. The Timer Counter register is incremented by an edge selected by bits 1:0 of this register.

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Since the selected clock signal is sampled by PCLK to identify edges on the selected clock signal, the high and low pulse width on the clock signal must not be shorter than the PCLK period.

Bits 7:4 of this register control the capture-clears-timer feature. This feature allows a selected edge on a particular CAP input to reset the timer and prescaler to zero. Thus the timer can be cleared on the leading edge of an input pulse and captured on the trailing edge. The captured value then directly reflects the pulse width, without the need to perform a subtraction operation in software

Table 165. Count Control Register (CTCR, address 0x4000 C070 (CT16B0) and 0x4001 0070 (CT16B1)) bit description

Bit	Symbol	Value	Description	Reset value
1:0	CTM		Counter/Timer Mode. This field selects whether the timer/counter is clocked by PCLK or by another signal.	00
		0x0	Timer Mode: PC is incremented on every rising PCLK edge	
		0x1	Counter Mode: the TC is incremented on rising edges on the signal selected by bits 3:2.	
		0x2	Counter Mode: the TC is incremented on falling edges on the signal selected by bits 3:2.	
		0x3	Counter Mode: the TC is incremented on both edges on the signal selected by bits 3:2.	
3:2	CIS		Count Input Select. In counter mode (when bits 1:0 in this register are not 00), these bits select which signal increments the counter:	00
		0x0	CT16Bi_CAP0 (bits 2:0 in the Capture Control Register (CCR) must be 000)	
		0x1	CT16Bi_CAP1 (bits 5:3 in the CCR must be 000)	
		0x2	CT16Bi_CAP2 (bits 8:6 in the CCR must be 000)	
		0x3	Analog comparator output (bits 11:9 in the CCR must be 000)	
4	EnCC		Enable Capture-Clear. A 1 in this bit enables clearing of the timer and prescaler when the event specified in bits 7:5 occurs.	0
7:5	SelCC		Capture-Clear Select. When bit 4 is 1, these bits select which capture input edge clears the timer and prescaler.	000
		0x0	A rising edge on CT16Bi_CAP0	
		0x1	A falling edge on CT16Bi_CAP0	
		0x2	A rising edge on CT16Bi_CAP1	
		0x3	A falling edge on CT16Bi_CAP1	
		0x4	A rising edge on CT16Bi_CAP2	
		0x5	A falling edge on CT16Bi_CAP2	
		0x6	A rising edge on the analog comparator output	
		0x7	A falling edge on the analog comparator output	
31:4	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

11.7.12 PWM Control register (PWMC)

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

The number of available single-edge controlled PWM outputs may vary between timers 0 and 1 and among devices in the family. One match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, match outputs configured as PWM outputs go LOW.

Table 166. PWM Control Register (PWMC, address 0x4000 C074 (CT16B0) and 0x4001 0074 (CT16B1)) bit description

			-	
Bit	Symbol	Value	Description	Reset value
0	PWMEN0		PWM mode enable for channel0.	0
		0	CT16Bi_MAT0 is controlled by EM0.	
		1	PWM mode is enabled for CT16Bi_MAT0.	
1	PWMEN1		PWM mode enable for channel1.	0
		0	CT16Bi_MAT1 is controlled by EM1.	
		1	PWM mode is enabled for CT16Bi_MAT1.	
2	PWMEN2		PWM mode enable for channel2.	0
		0	CT16Bi_MAT2 is controlled by EM2.	
		1	PWM mode is enabled for CT16Bi_MAT2.	
3	PWMEN3		PWM mode enable for channel3.	0
		0	CT16Bi_MAT3 is controlled by EM03.	
		1	PWM mode is enabled for CT16Bi_MAT3.	
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

11.7.13 Rules for single edge controlled PWMs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- 3. If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared at the start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick. Therefore, the PWM output will always consist of a one-clock-wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

UM10527

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

Note: When the match outputs are selected to serve as PWM outputs, the timer reset (MRiR) and timer stop (MRiS) bits in the Match Control Register MCR must be cleared to 0 except for the match register that controls the PWM cycle length. For this register, set the MRiR bit to 1 to enable the timer reset when the timer value matches the value of the corresponding match register.

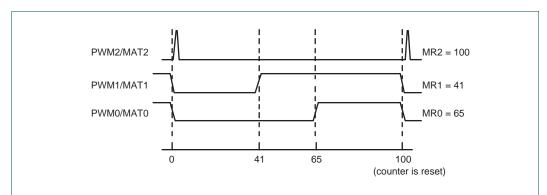
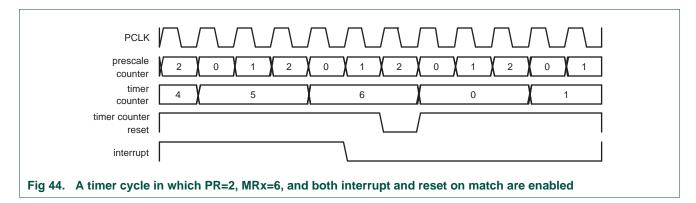
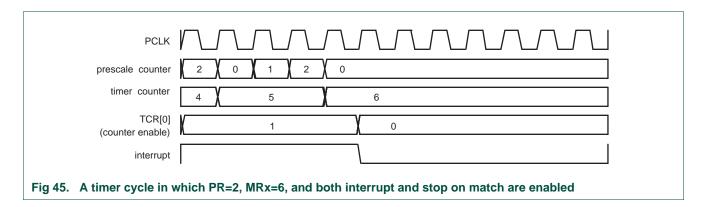
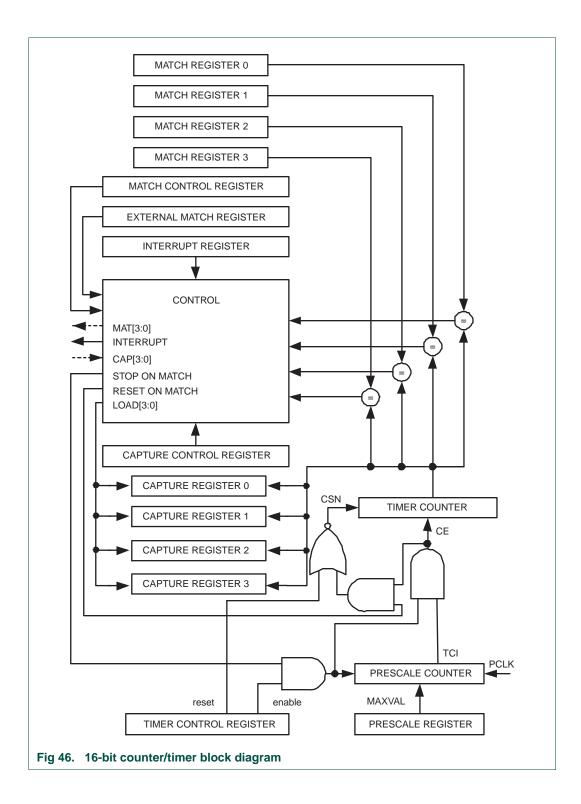



Fig 43. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR2) and MAT1:0 enabled as PWM outputs by the PWMC register.


11.8 Example timer operation

<u>Figure 44</u> shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

<u>Figure 45</u> shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.


Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

11.9 Architecture

The 16-bit counter/timer block diagram is shown in Figure 46.

Chapter 11: LPC11Axx 16-bit counter/timer (CT16B0/1)

186 of 379

UM10527

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Rev. 5 — 21 January 2013

User manual

12.1 How to read this chapter

The 32-bit timer blocks are identical for all LPC11Axx parts, though the number of pinouts may vary.

12.2 Basic configuration

The CT32B0/1 counter/timers are configured through the following registers:

- Pins: Configure the CT32B0/1 pins in the IOCON register block (Table 81).
- Power: In the SYSAHBCLKCTRL register, set bit 9 and 10 in <u>Table 20</u>.
- The peripheral clock is determined by the system clock (see Table 19).

12.3 Features

- Two 32-bit counter/timers with a programmable 32-bit prescaler.
- Counter or Timer operation.
- 32-bit capture channels can take a snapshot of the timer value when an input signal transitions. Such a capture event can optionally generate an interrupt.
- Four 32-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- External outputs controlled by match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.
- For each timer, up to four match registers can be configured as "PWM", which allows
 the use of up to three match outputs as single edge controlled PWM outputs.
- The timer and prescaler can be cleared on a designated capture event. This permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge.

12.4 Applications

- Interval timer for counting internal events
- Pulse Width Demodulator via capture input
- Free running timer
- Pulse Width Modulator via match outputs

UM10527

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

12.5 Description

Each Counter/timer is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock and can optionally generate interrupts or perform other actions at specified timer values based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.

In PWM mode, match registers can be used to provide a single-edge controlled PWM output on the match output pins. It is best to use a match register that is not pinned out to control the PWM cycle length.

The following pages describe 4 MATj outputs and 3 CAPj inputs, but these may not all be connected to pins.

Remark: 32-bit counter/timer0 (CT32B0) and 32-bit counter/timer1 (CT32B1) are functionally identical except for the peripheral base address and I/O multiplexing.

12.6 Pin description

Table 167 gives a brief summary of each of the counter/timer related pins.

Table 167. Counter/timer pin description

Pin	Type	Description
CT32B0_CAPj CT32B1_CAPj	•	Capture Signals: A transition on a pin or on-chip signal can be configured to load the corresponding Capture Registers with the value in the counter/timer and optionally generate an interrupt.
		The counter/timer block can select a capture signal as a clock source instead of the PCLK derived clock. For more details see Section 12.7.11 "Count Control Register (CTCR)" on page 196.
CT32B0_MATj CT32B1_MATj	Output	External Match Output: When a match register (MRj) equals the timer counter (TC), a MATj pin can either toggle, go LOW, go HIGH, or do nothing. The External Match Register (EMR) and the PWM Control register (PWMCON) control the functionality of these outputs.

12.7 Register description

The 32-bit counter/timers contain the registers shown in <u>Table 168</u>. "i" in "32Bi" can be 0 or 1. "j" in "MATj" or "CAPj" can be 0 through 3. Address offsets other than those shown are reserved and should not be written. More detailed descriptions follow.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 168. Register overview: 32-bit counter/timers CT32B0 (base address 0x4001 4000) and CT32B1 (base address 0x4001 8000)

Name	Access	Address offset	Description	Reset value[1]
IR	R/W	0x000	Interrupt Register (IR). The IR can be written to clear interrupts. The IR can be read to identify which of five possible interrupt sources are pending.	0
TCR	R/W	0x004	Timer Control Register (TCR). The TCR is used to control the Timer Counter functions. The Timer Counter can be disabled or reset through the TCR.	0
TC	R/W	0x008	Timer Counter (TC). The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled through the TCR.	0
PR	R/W	0x00C	Prescale Register (PR). When the Prescale Counter (below) is equal to this value, the next clock increments the TC and clears the PC.	0
PC	R/W	0x010	Prescale Counter (PC). The 32-bit PC is a counter which is incremented to the value stored in PR. When the value in PR is reached, the TC is incremented and the PC is cleared. The PC is observable and controllable through the bus interface.	0
MCR	R/W	0x014	Match Control Register (MCR). The MCR is used to control if an interrupt is generated and if the TC is reset when a Match occurs.	0
MR0	R/W	0x018	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT32i_MATj output (if any) when the TC matches MRj.	0
MR1	R/W	0x01C	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT32i_MATj output (if any) when the TC matches MRj.	0
MR2	R/W	0x020	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT32i_MATj output (if any) when the TC matches MRj.	0
MR3	R/W	0x024	Match Register. Each match can be enabled in the MCR to reset the TC, stop both the TC and PC, generate an interrupt, and/or switch a CT32i_MATj output (if any) when the TC matches MRj.	0
CCR	R/W	0x028	Capture Control Register (CCR). The CCR controls which edges of the capture inputs are used to load the Capture Registers and whether or not an interrupt is generated when a capture takes place.	0
CR0	RO	0x02C	Capture Registers. Each CRj register can be loaded with the value of TC when there is an event on its CT32Bi_CAPj input or internal signal.	0
CR1	RO	0x030	Capture Registers. Each CRj register can be loaded with the value of TC when there is an event on its CT32Bi_CAPj input or internal signal.	0
CR2	RO	0x034	Capture Registers. Each CRj register can be loaded with the value of TC when there is an event on its CT32Bi_CAPj input or internal signal.	0
CR3	RO	0x038	Capture Registers. Each CRj register can be loaded with the value of TC when there is an event on its CT32Bi_CAPj input or internal signal.	0
EMR	R/W	0x03C	External Match Register (EMR). The EMR controls the match function and the external match pins CT32B0_MATj.	0
CTCR	R/W	0x070	Count Control Register (CTCR). The CTCR selects between Timer and Counter mode, and in Counter mode selects the signal and edge(s) for counting.	0
PWMC	R/W	0x074	PWM Control Register (PWMCON). The PWMCON enables PWM mode for the external match pins CT32B0_MATj.	0

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

12.7.1 Interrupt Registers (IR)

The Interrupt Registers include up to four bits for match interrupts and four bits for capture interrupts. If an interrupt is generated then the corresponding bit in the IR will be 1. Otherwise the bit will be 0. Writing a 1 to an IR bit clears the bit and thus the interrupt. Writing a zero has no effect.

Table 169: Interrupt Register (IR, address 0x4001 4000 (CT32B0) and IR, address 0x4001 8000) bit description

Bit	Symbol	Description	Reset value
0	MR0INT	Interrupt flag for match channel 0.	0
1	MR1INT	Interrupt flag for match channel 1.	0
2	MR2INT	Interrupt flag for match channel 2.	0
3	MR3INT	Interrupt flag for match channel 3.	0
4	CR0INT	Interrupt flag for capture channel 0 event.	0
5	CR1INT	Interrupt flag for capture channel 1 event.	0
6	CR2INT	Interrupt flag for capture channel 2 event.	0
7	CR3INT	Interrupt flag for capture channel 3 event.	0
31:8	-	Reserved	-

12.7.2 Timer Control Register (TCR)

The Timer Control Register (TCR) is used to control the operation of the counter/timer.

Table 170. Timer Control Register (TCR, address 0x4001 4004 (CT32B0) and 0x4001 8004 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	CEN		Counter enable.	0
		0	The counters are disabled.	
		1	The Timer Counter and Prescale Counter are enabled for counting.	
1	CRST		Counter reset.	0
		0	Do nothing.	
		1	The Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	
31:2	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.7.3 Timer Counter (TC)

The 32-bit Timer Counter is incremented when the Prescale Counter reaches its terminal count, or when a selected edge occurs on an input signal. Unless it is reset before reaching its upper limit, the TC will count up through 0xFFFF FFFF and then wrap back to 0x0000 0000. This event does not cause an interrupt, but a Match register can be used to detect an overflow if needed.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 171: Timer counter registers (TC, address 0x4001 4008 (CT32B0) and 0x4001 8008 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	TC	Timer counter value.	0

12.7.4 Prescale Register (PR)

The 32-bit Prescale Register specifies the maximum value for the Prescale Counter.

Table 172: Prescale registers (PR, address 0x4001 400C (CT32B0) and 0x4001 800C (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	PCVAL	Prescale value.	0

12.7.5 Prescale Counter Register (PC)

The 32-bit Prescale Counter controls division of PCLK by some constant value before it is applied to the Timer Counter. This allows control of the relationship between the resolution of the timer and the maximum time before the timer overflows. The Prescale Counter is incremented on every PCLK. When it reaches the value stored in the Prescale Register, the Timer Counter is incremented, and the Prescale Counter is reset on the next PCLK. This causes the TC to increment on every PCLK when PR = 0, every 2 PCLKs when PR = 1, etc.

Table 173: Prescale registers (PC, address 0x4001 4010 (CT32B0) and 0x4001 8010 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	PC	Prescale counter value.	0

12.7.6 Match Control Register (MCR)

The Match Control Register is used to control what operations are performed when one of the Match Registers matches the Timer Counter. The function of each of the bits is shown in Table 174.

Table 174: Match Control Register (MCR, address 0x4001 4014 (CT32B0) and 0x4001 8014 (CT32B1)) bit description

				-	
Bit	Symbol	Value	Description	Reset value	
0	MR0I		Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0	
		1	Enabled		
		0	Disabled		
1	MR0R	MR0R		Reset on MR0: the TC will be reset if MR0 matches it.	0
		1	Enabled		
		0	Disabled		

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 174: Match Control Register (MCR, address 0x4001 4014 (CT32B0) and 0x4001 8014 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
2	MR0S		Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		1	Enabled	
		0	Disabled	
3	MR1I		Interrupt on MR1: an interrupt is generated when MR1 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
4	MR1R		Reset on MR1: the TC will be reset if MR1 matches it.	0
		1	Enabled	
		0	Disabled	
5	MR1S		Stop on MR1: the TC and PC will be stopped and TCR[0] will be set to 0 if MR1 matches the TC.	0
		1	Enabled	
		0	Disabled	
6	MR2I		Interrupt on MR2: an interrupt is generated when MR2 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
7	MR2R		Reset on MR2: the TC will be reset if MR2 matches it.	0
		1	Enabled	
		0	Disabled	
8	MR2S		Stop on MR2: the TC and PC will be stopped and TCR[0] will be set to 0 if MR2 matches the TC.	0
		1	Enabled	
		0	Disabled	
9	MR3I		Interrupt on MR3: an interrupt is generated when MR3 matches the value in the TC.	0
		1	Enabled	
		0	Disabled	
10	MR3R		Reset on MR3: the TC will be reset if MR3 matches it.	0
		1	Enabled	
		0	Disabled	
11	MR3S		Stop on MR3: the TC and PC will be stopped and TCR[0] will be set to 0 if MR3 matches the TC.	0
		1	Enabled	
		0	Disabled	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

12.7.7 Match Registers (MR0/1/2/3)

The Match register values are continuously compared to the Timer Counter value. When the two values are equal, actions can be triggered automatically. The action possibilities are to generate an interrupt, reset the Timer Counter, or stop the timer. Actions are controlled by the settings in the MCR register.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 175: Match registers (MR0 to 3, addresses 0x4001 4018 to 24 (CT32B0) and 0x4001 8018 to 24 (CT32B1)) bit description

Bit	Symbol	Description	Reset value
31:0	MATCH	Timer counter match value.	0

12.7.8 Capture Control Registers (CCR)

The Capture Control Register is used to control whether the Capture Registers are loaded with the value in the Timer Counter when the corresponding capture event occurs, and whether an interrupt is generated by the capture event. Setting both the rising and falling bits at the same time is a valid configuration, resulting in a capture event for both edges. In the descriptions below, "i" represents the Timer number, 0 or 1.

Table 176. Capture Control Register (CCR, address 0x4001 4028 (CT32B0) and 0x4001 8028 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
0	CAP0RE		Capture on CT32Bi_CAP0 rising edge: a sequence of 0 then 1 on CT32Bi_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled	value
		0	Disabled	
1	CAP0FE		Capture on CT32Bi_CAP0 falling edge: a sequence of 1 then 0 on CT32Bi_CAP0 will cause CR0 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
2	CAP0I		Interrupt on CT32Bi_CAP0 event: a CR0 load due to a CT32Bi_CAP0 event will generate an interrupt.	0
		1	Enabled	
		0	Disabled	
3	CAP1RE		Capture on CT32Bi_CAP1 rising edge: a sequence of 0 then 1 on CT32Bi_CAP1 will cause CR1 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	
4	CAP1FE		Capture on CT32Bi_CAP1 falling edge: a sequence of 1 then 0 on CT32Bi_CAP1 will cause CR1 to be loaded with the contents of TC.	
		1	Enabled	
		0	Disabled	
5	CAP1I		Interrupt on CT32Bi_CAP1 event: a CR1 load due to a CT32Bi_CAP1 event will generate an interrupt.	0
		1	Enabled	
		0	Disabled	
6	CAP2RE		Capture on CT32Bi_CAP2 rising edge: a sequence of 0 then 1 on CT32Bi_CAP2 will cause CR2 to be loaded with the contents of TC.	0
		1	Enabled	
		0	Disabled	

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 176. Capture Control Register (CCR, address 0x4001 4028 (CT32B0) and 0x4001 8028 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value	
7	CAP2FE		Capture on CT32Bi_CAP2 falling edge: a sequence of 1 then 0 on CT32Bi_CAP2 will cause CR2 to be loaded with the contents of TC.	0	
		1	Enabled		
		0	Disabled		
8	CAP2I		Interrupt on CT32Bi_CAP2 event: a CR2 load due to a CT32Bi_CAP2 event will generate an interrupt.	0	
		1	Enabled		
		0	Disabled		
9	CAP3RE		Capture on comparator output rising edge: a sequence of 0 then 1 on comparator output will cause CR3 to be loaded with the contents of TC.	0	
		1	Enabled		
		0	Disabled		
10	CAP3FE		Capture on comparator output falling edge: a sequence of 1 then 0 on comparator output will cause CR3 to be loaded with the contents of TC.	_	
		1	Enabled		
		0	Disabled		
11	CAP3I		Interrupt on comparator output event: a CR3 load due to a comparator output event will generate an interrupt.	0	
		1	Enabled		
		0	Disabled		
31:12	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

12.7.9 Capture Registers (CR)

Each Capture register is associated with a signal and may be loaded with the Timer Counter value when a specified event occurs on that signal. The settings in the Capture Control Register register determine whether the capture function is enabled, and whether a capture event happens on the rising edge of the associated pin, the falling edge, or on both edges.

Table 177: Capture registers (CR0 to 3, addresses 0x4001 402C to 0x4001 4038 (CT16B0) and CR0 to 3, addresses 0x4001 802C to 0x4001 8038 (CT16B1)) bit description

Bit	Symbol	Description	Reset value
31:0	CAP	Timer counter capture value.	0

12.7.10 External Match Register (EMR)

The External Match Register provides both control and status of the external match channels and external match pins CT32Bi_MATj.

If the match outputs are configured as PWM output in the PWMCON registers (Section 12.7.12), the function of the external match registers is determined by the PWM rules (Section 12.7.13 "Rules for single edge controlled PWMs" on page 198).

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 178: External Match Register (EMR, address 0x4001 403C (CT32B0) and 0x4001 803C (CT32B1)) bit description

	uesci			
Bit	Symbol	Value	Description	Reset value
0	EM0		External Match 0. This bit reflects the state of output CT32Bi_MAT0, whether or not this output is connected to its pin. When a match occurs between the TC and MR0, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[5:4] control the functionality of this output. This bit is driven to the CT32Bi_MAT0 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
1	EM1		External Match 1. This bit reflects the state of output CT32Bi_MAT1, whether or not this output is connected to its pin. When a match occurs between the TC and MR1, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[7:6] control the functionality of this output. This bit is driven to the CT32Bi_MAT1 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
2	EM2		External Match 2. This bit reflects the state of output CT32Bi_MAT2, whether or not this output is connected to its pin. When a match occurs between the TC and MR2, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[9:8] control the functionality of this output. This bit is driven to the CT32Bi_MAT2 pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
3	EM3		External Match 3. This bit reflects the state of output CT32Bi_MAT3, whether or not this output is connected to its pin. When a match occurs between the TC and MR3, this bit can either toggle, go LOW, go HIGH, or do nothing. Bits EMR[11:10] control the functionality of this output. This bit is driven to the CT32Bi_MAT3i pins if the match function is selected in the IOCON registers (0 = LOW, 1 = HIGH).	0
5:4	EMC0		External Match Control 0. Determines the functionality of External Match 0.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT0 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT0 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
7:6	EMC1		External Match Control 1. Determines the functionality of External Match 1.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT1 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT1 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
9:8	EMC2		External Match Control 2. Determines the functionality of External Match 2.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT2 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT2 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 178: External Match Register (EMR, address 0x4001 403C (CT32B0) and 0x4001 803C (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value
11:10	EMC3		External Match Control 3. Determines the functionality of External Match 3.	00
		0x0	Do Nothing.	
		0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MAT3 pin is LOW if pinned out).	
		0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MAT3 pin is HIGH if pinned out).	
		0x3	Toggle the corresponding External Match bit/output.	
31:12	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 179. External match control

EMR[11:10], EMR[9:8], EMR[7:6], or EMR[5:4]	Function
0x0	Do Nothing.
0x1	Clear the corresponding External Match bit/output to 0 (CT32Bi_MATj pin is LOW if pinned out).
0x2	Set the corresponding External Match bit/output to 1 (CT32Bi_MATj pin is HIGH if pinned out).
0x3	Toggle the corresponding External Match bit/output.

12.7.11 Count Control Register (CTCR)

The Count Control Register (CTCR) is used to select between Timer and Counter mode, and in Counter mode to select the signal and edge(s) for counting.

When Counter Mode is selected in this register, the signal selected by bits 3:2 is sampled on every rising edge of the PCLK clock. By comparing two consecutive samples of this signal, rising and falling edges on the signal are detected. The Timer Counter register is incremented by an edge selected by bits 1:0 of this register.

Since the selected clock signal is sampled by PCLK to identify edges on the selected clock signal, the high and low pulse width on the clock signal must not be shorter than the PCLK period.

Bits 7:4 of this register control the capture-clears-timer feature. This feature allows a selected edge on a particular CAP input to reset the timer and prescaler to zero. Thus the timer can be cleared on the leading edge of an input pulse and captured on the trailing edge. The captured value then directly reflects the pulse width, without the need to perform a subtraction operation in software.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 180: Count Control Register (CTCR, address 0x4001 4070 (CT32B0) and 0x4001 8070 (CT32B1)) bit description

Bit	Symbol	Value	Description	Reset value	
1:0	СТМ		Counter/Timer Mode. This field selects whether the timer/counter is clocked by PCLK or by another signal.	00	
		0x0	Timer Mode: PC is incremented on every rising PCLK edge		
		0x1	Counter Mode: the TC is incremented on rising edges on the signal selected by bits 3:2.		
		0x2	Counter Mode: the TC is incremented on falling edges on the signal selected by bits 3:2.		
		0x3	Counter Mode: the TC is incremented on both edges on the signal selected by bits 3:2.		
3:2	CIS		In counter mode (when bits 1:0 in this register are not 00), these bits select which signal increments the counter:	00	
		0x0	CT32Bi_CAP0 (bits 2:0 in the Capture Control Register (CCR) must be 000)		
		0x1	CT32Bi_CAP1 (bits 5:3 in the CCR must be 000)		
		0x2	CT32Bi_CAP2 (bits 8:6 in the CCR must be 000)		
		0x3	Analog comparator output (bits 11:9 in the CCR must be 000)		
4	ENCC		Enable Capture-Clear. A 1 in this bit enables clearing of the timer and prescaler when the event specified in bits 7:5 occurs.	0	
7:5	SELCC		Capture-Clear Select. When bit 4 is 1, these bits select which capture input edge clears the timer and prescaler.	000	
		0x0	A rising edge on CT32Bi_CAP0		
		0x1	A falling edge on CT32Bi_CAP0		
		0x2	A rising edge on CT32Bi_CAP1		
		0x3	A falling edge on CT32Bi_CAP1		
		0x7	A rising edge on CT32Bi_CAP2		
		0x5	A falling edge on CT32Bi_CAP2		
		0x6	A rising edge on the analog comparator output		
		0x7	A falling edge on the analog comparator output		
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA	

12.7.12 PWM Control Register (PWMC)

The PWM Control Register is used to configure the match outputs as PWM outputs. Each match output can be independently set to perform either as PWM output or as match output whose function is controlled by the External Match Register (EMR).

The number of available single-edge controlled PWM outputs may vary between timers and among devices in the family. One match register determines the PWM cycle length. When a match occurs in any of the other match registers, the PWM output is set HIGH. The timer is reset by the match register that is configured to set the PWM cycle length. When the timer is reset to zero, match outputs configured as PWM outputs go LOW.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

Table 181. PWM Control Register (PWMC, 0x4001 4074 (CT32B0) and 0x4001 8074 (CT32B1)) bit description

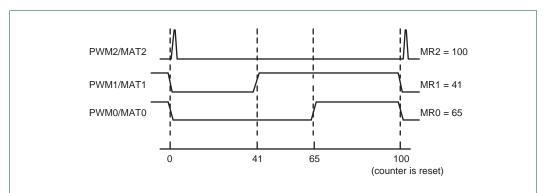
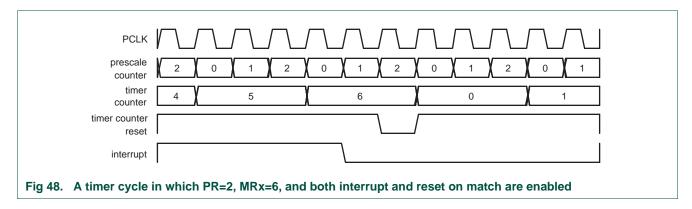
	2000			
Bit	Symbol	Value	Description	Reset value
0	PWMEN0		PWM mode enable for channel0.	0
		0	CT32Bi_MAT0 is controlled by EM0.	
		1	PWM mode is enabled for CT32Bi_MAT0.	
1	PWMEN1		PWM mode enable for channel1.	0
		0	CT32Bi_MAT0 is controlled by EM1.	
		1	PWM mode is enabled for CT32Bi_MAT1.	
2	PWMEN2		PWM mode enable for channel2.	0
		0	CT32Bi_MAT0 is controlled by EM2.	
		1	PWM mode is enabled for CT32Bi_MAT2.	
3	PWMEN3		PWM mode enable for channel3.	0
		0	CT32Bi_MAT0 is controlled by EM03.	
		1	PWM mode is enabled for CT32Bi_MAT3.	
31:4	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

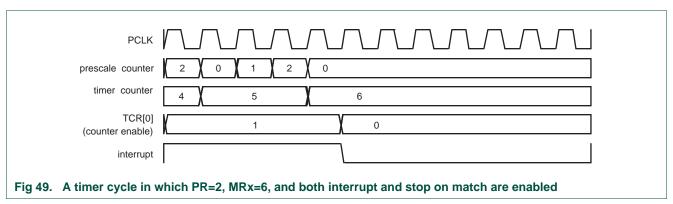
12.7.13 Rules for single edge controlled PWMs

- 1. All single edge controlled PWM outputs go LOW at the beginning of each PWM cycle (timer is set to zero) unless their match value is equal to zero.
- 2. Each PWM output will go HIGH when its match value is reached. If no match occurs (i.e. the match value is greater than the PWM cycle length), the PWM output remains continuously LOW.
- 3. If a match value larger than the PWM cycle length is written to the match register, and the PWM signal is HIGH already, then the PWM signal will be cleared at the start of the next PWM cycle.
- 4. If a match register contains the same value as the timer reset value (the PWM cycle length), then the PWM output will be reset to LOW on the next clock tick. Therefore, the PWM output will always consist of a one-clock-wide positive pulse with a period determined by the PWM cycle length (i.e. the timer reload value).
- 5. If a match register is set to zero, then the PWM output will go to HIGH the first time the timer goes back to zero and will stay HIGH continuously.

Note: When the match outputs are selected to function as PWM outputs, the timer reset (MRiR) and timer stop (MRiS) bits in the Match Control Register MCR must be cleared to 0 except for the match register that controls the PWM cycle length. For this register, set the MRiR bit to 1 to enable the timer reset when the timer value matches the value of the corresponding match register.

Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

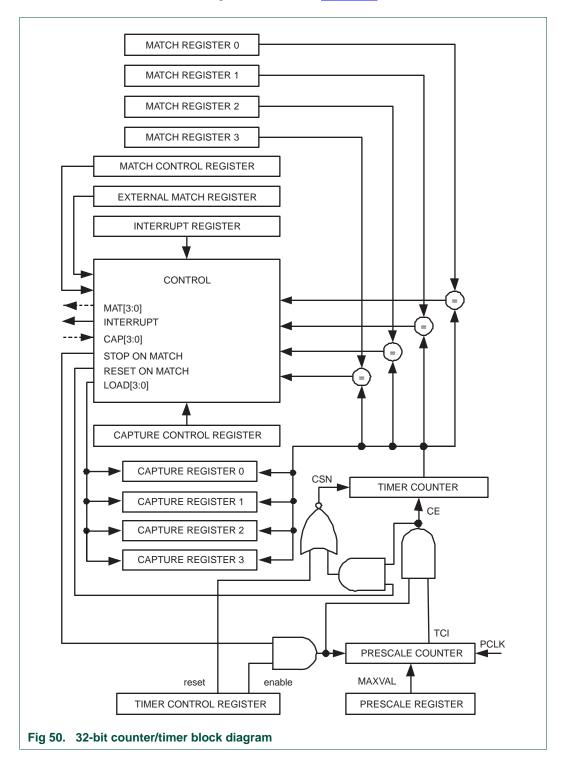




Fig 47. Sample PWM waveforms with a PWM cycle length of 100 (selected by MR2) and MAT1:0 enabled as PWM outputs by the PWMC register.

12.8 Example timer operation

<u>Figure 48</u> shows a timer configured to reset the count and generate an interrupt on match. The prescaler is set to 2 and the match register set to 6. At the end of the timer cycle where the match occurs, the timer count is reset. This gives a full length cycle to the match value. The interrupt indicating that a match occurred is generated in the next clock after the timer reached the match value.

<u>Figure 49</u> shows a timer configured to stop and generate an interrupt on match. The prescaler is again set to 2 and the match register set to 6. In the next clock after the timer reaches the match value, the timer enable bit in TCR is cleared, and the interrupt indicating that a match occurred is generated.



Chapter 12: LPC11Axx 32 bit counter/timer (CT32B0/1)

12.9 Architecture

The 32-bit counter/timer block diagram is shown in Figure 50.

UM10527

Chapter 13: LPC11Axx System tick timer

Rev. 5 — 21 January 2013

User manual

13.1 How to read this chapter

The system tick timer (SysTick timer) is part of the ARM Cortex-M0 core and is identical for all LPC11Axx parts.

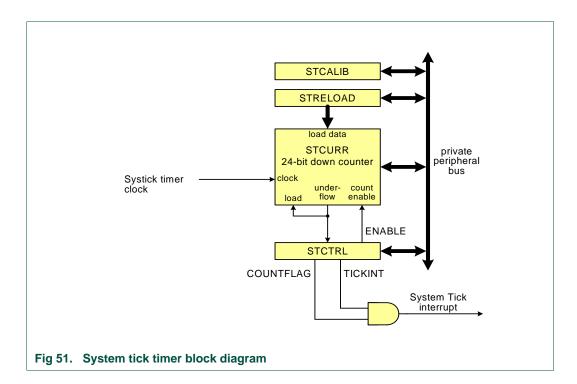
13.2 Features

- Time intervals of 10 milliseconds.
- Uses dedicated exception vector.
- Clocked internally by a dedicated system tick timer clock.

13.3 Description

The SysTick timer is an integral part of the Cortex-M0. The SysTick timer is intended to generate a fixed 10 millisecond interrupt for use by an operating system or other system management software.

Since the SysTick timer is a part of the Cortex-M0, it facilitates porting of software by providing a standard timer that is available on all Cortex-M0 based devices.


Refer to the Cortex-M0 User Guide for details.

13.4 Operation

The SysTick timer is a 24-bit timer that counts down to zero and generates an interrupt. The intent is to provide a fixed 10 millisecond time interval between interrupts. The SysTick timer is clocked from the CPU clock. In order to generate recurring interrupts at a specific interval, the STRELOAD register must be initialized with the correct value for the desired interval. A default value is provided in the STCALIB register and may be changed by software. The default value gives a 10 millisecond interrupt rate if the CPU clock is set appropriately.

The block diagram of the SysTick timer is shown below in the Figure 51.

Chapter 13: LPC11Axx System tick timer

13.5 Register description

Table 182. SysTick timer register map (base address 0xE000 E000)

Name	Access	Address offset	Description	Reset value[1]
STCTRL	R/W	0x010	System Timer Control and status register	0x4
STRELOAD	R/W	0x014	System Timer Reload value register	0
STCURR	R/W	0x018	System Timer Current value register	0
STCALIB	R/W	0x01C	System Timer Calibration value register	0x4

^[1] Reset Value reflects the data stored in used bits only. It does not include content of reserved bits.

13.5.1 System Timer Control and status register (STCTRL - 0xE000 E010)

The STCTRL register contains control information for the SysTick timer, and provides a status flag.

Table 183. System Timer Control and status register (STCTRL - 0xE000 E010) bit description

Bit	Symbol	Description	Reset value
0	ENABLE	System Tick counter enable. When 1, the counter is enabled. When 0, the counter is disabled.	0
1	TICKINT	System Tick interrupt enable. When 1, the System Tick interrupt is enabled. When 0, the System Tick interrupt is disabled. When enabled, the interrupt is generated when the System Tick counter counts down to 0.	0
2	-	Reserved	1

Chapter 13: LPC11Axx System tick timer

Table 183. System Timer Control and status register (STCTRL - 0xE000 E010) bit description

Bit	Symbol	Description	Reset value
15:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
16	COUNTFLAG	System Tick counter flag. This flag is set when the System Tick counter counts down to 0, and is cleared by reading this register.	0
31:17	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.5.2 System Timer Reload value register (STRELOAD - 0xE000 E014)

The STRELOAD register is set to the value that will be loaded into the SysTick timer whenever it counts down to zero. This register is loaded by software as part of timer initialization. The STCALIB register may be read and used as the value for STRELOAD if the CPU or external clock is running at the frequency intended for use with the STCALIB value.

Table 184. System Timer Reload value register (STRELOAD - 0xE000 E014) bit description

Bit	Symbol	Description	Reset value
23:0	RELOAD	This is the value that is loaded into the System Tick counter when it counts down to 0. $ \\$	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.5.3 System Timer Current value register (STCURR - 0xE000 E018)

The STCURR register returns the current count from the System Tick counter when it is read by software.

Table 185. System Timer Current value register (STCURR - 0xE000 E018) bit description

Bit	Symbol	Description	Reset value
23:0	CURRENT	Reading this register returns the current value of the System Tick counter. Writing any value clears the System Tick counter and the COUNTFLAG bit in STCTRL.	0
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

13.5.4 System Timer Calibration value register (STCALIB - 0xE000 E01C)

For details, see Table 328.

Table 186. System Timer Calibration value register (STCALIB - 0xE000 E01C) bit description

Bit	Symbol	Value	Description	Reset value
23:0	TENMS		System tick timer calibration value	0x04

Chapter 13: LPC11Axx System tick timer

Table 186. System Timer Calibration value register (STCALIB - 0xE000 E01C) bit description

Bit	Symbol	Value	Description	Reset value
29:24	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
30	SKEW		See <u>Table 328</u> .	0
31	NOREF		See <u>Table 328</u> .	0

UM10527

Chapter 14: LPC11Axx WatchDog Timer (WDT)

Rev. 5 — 21 January 2013

User manual

14.1 How to read this chapter

The WWDT is identical for all parts.

14.2 Features

- Internally resets chip if not reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time-out period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Programmable 24 bit timer with internal fixed pre-scaler.
- Selectable time period from 1,024 watchdog clocks (T_{WDCLK} × 256 × 4) to over 67 million watchdog clocks (T_{WDCLK} × 2²⁴ × 4) in increments of 4 watchdog clocks.
- "Safe" watchdog operation. Once enabled, requires a hardware reset or a Watchdog reset to be disabled.
- Incorrect feed sequence causes immediate watchdog event if enabled.
- The watchdog reload value can optionally be protected such that it can only be changed after the "warning interrupt" time is reached.
- Flag to indicate Watchdog reset.
- The Watchdog clock (WDCLK) source can be selected as the Internal High frequency oscillator (IRC) or the WatchDog oscillator.
- Debug mode.

14.3 Applications

The purpose of the Watchdog Timer is to reset or interrupt the microcontroller within a programmable time if it enters an erroneous state. When enabled, a watchdog reset and/or will be generated if the user program fails to "feed" (reload) the Watchdog within a predetermined amount of time.

When a watchdog window is programmed, an early watchdog feed is also treated as a watchdog event. This allows preventing situations where a system failure may still feed the watchdog. For example, application code could be stuck in an interrupt service that contains a watchdog feed. Setting the window such that this would result in an early feed will generate a watchdog event, allowing for system recovery.

14.4 Description

The Watchdog consists of a fixed (divide by 4) pre-scaler and a 24 bit counter which decrements when clocked. The minimum value from which the counter decrements is 0xFF. Setting a value lower than 0xFF causes 0xFF to be loaded in the counter. Hence the

UM10527

Chapter 14: LPC11Axx WatchDog Timer (WDT)

minimum Watchdog interval is ($T_{WDCLK} \times 256 \times 4$) and the maximum Watchdog interval is ($T_{WDCLK} \times 2^{24} \times 4$) in multiples of ($T_{WDCLK} \times 4$). The Watchdog should be used in the following manner:

- Set the Watchdog timer constant reload value in the WDTC register.
- Set the Watchdog timer operating mode in the WDMOD register.
- Set a value for the watchdog window time in the WDWINDOW register if windowed operation is desired.
- Set a value for the watchdog warning interrupt in the WDWARNINT register if a warning interrupt is desired.
- Enable the Watchdog by writing 0xAA followed by 0x55 to the WDFEED register.
- The Watchdog must be fed again before the Watchdog counter reaches zero in order to prevent a watchdog event. If a window value is programmed, the feed must also occur after the watchdog counter passes that value.

When the Watchdog Timer is configured so that a watchdog event will cause a reset and the counter reaches zero, the CPU will be reset, loading the stack pointer and program counter from the vector table as for an external reset. The Watchdog time-out flag (WDTOF) can be examined to determine if the Watchdog has caused the reset condition. The WDTOF flag must be cleared by software.

When the Watchdog Timer is configured to generate a warning interrupt, the interrupt will occur when the counter matches the value defined by the WDWARNINT register.

14.5 Clocking and power control

The watchdog timer block uses two clocks: PCLK and WDCLK. PCLK is used for the APB accesses to the watchdog registers and is derived from the system clock (see <u>Figure 4</u>). The WDCLK is used for the watchdog timer counting and is derived from the wdt_clk in <u>Figure 4</u>. Either the IRC or the watchdog oscillator can be used as wdt_clk.

There is some synchronization logic between these two clock domains. When the WDMOD and WDTC registers are updated by APB operations, the new value will take effect in 3 WDCLK cycles on the logic in the WDCLK clock domain. When the watchdog timer is counting on WDCLK, the synchronization logic will first lock the value of the counter on WDCLK and then synchronize it with the PCLK for reading as the WDTV register by the CPU.

The watchdog oscillator can be powered down in the PDRUNCFG register (Section 3.5.28) if it is not used. The clock to the watchdog register block (PCLK) can be disabled in the SYSAHBCLKCTRL register (Section 3.5.15) for power savings.

14.6 Register description

The Watchdog Timer contains the registers shown in Table 187.

Chapter 14: LPC11Axx WatchDog Timer (WDT)

Table 187. Register overview: Watchdog timer (base address 0x4000 4000)

Name	Access	Address offset	Description	Reset Value[1]
WDMOD	R/W	0x000	Watchdog mode register. This register contains the basic mode and status of the Watchdog Timer.	0
WDTC	R/W	0x004	Watchdog timer constant register. This 24-bit register determines the time-out value.	0xFF
WDFEED	WO	0x008	Watchdog feed sequence register. Writing 0xAA followed by 0x55 to this register reloads the Watchdog timer with the value contained in WDTC.	NA
WDTV	RO	0x00C	Watchdog timer value register. This 24-bit register reads out the current value of the Watchdog timer.	0xFF
WDCLKSEL	R/W	0x010	Watchdog clock select register.	0
WDWARNINT	R/W	0x014	Watchdog Warning Interrupt compare value.	0
WDWINDOW	R/W	0x018	Watchdog Window compare value.	0xFF FFFF

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

14.6.1 Watchdog Mode register (WDMOD)

The WDMOD register controls the operation of the Watchdog. Note that a watchdog feed must be performed before any changes to the WDMOD register take effect.

Table 188. Watchdog Mode register (WDMOD - 0x4000 4000) bit description

Bit	Symbol	Value	Description	Reset Value
0	WDEN		Watchdog enable bit. Once this bit has been written with a 1 it cannot be rewritten with a 0.	0
		0	The watchdog timer is stopped.	
		1	The watchdog timer is running.	
1	WDRESET		Watchdog reset enable bit. Once this bit has been written with a 1 it cannot be rewritten with a 0.	0
		0	A watchdog timeout will not cause a chip reset.	
		1	A watchdog timeout will cause a chip reset.	
2	WDTOF		Watchdog time-out flag. Set when the watchdog timer times out, by a feed error, or by events associated with WDPROTECT. Cleared by software. Causes a chip reset if WDRESET = 1.	0 (only after externa I reset)
3	WDINT		Warning interrupt flag. Set when the timer reaches the value in WDWARNINT. Cleared by software.	0

Chapter 14: LPC11Axx WatchDog Timer (WDT)

Table 188. Watchdog Mode register (WDMOD - 0x4000 4000) bit description

Bit	Symbol	Value	Description	Reset Value
4	WDPROTECT		Watchdog update mode. Once this bit has been written with a 1 it cannot be rewritten with a 0.	0
		0	The watchdog reload value (WDTC) can be changed at any time.	
		1	The watchdog reload value (WDTC) can be changed only after the counter is below the value of WDWARNINT and WDWINDOW.	
5	LOCK		A 1 in this bit prevents disabling or powering down the clock source selected by bit 0 of the WDCLKSRC register, and also prevents switching that bit to a clock source that is disabled or powered down.	0
31:6	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Once the **WDEN**, **WDPROTECT**, or **WDRESET** bits are set they can not be cleared by software. Both flags are cleared by an external reset or a Watchdog timer reset.

WDTOF The Watchdog time-out flag is set when the Watchdog times out, when a feed error occurs, or when WDPROTECT =1 and an attempt is made to write to the WDTC register. This flag is cleared by software writing a 0 to this bit.

WDINT The Watchdog interrupt flag is set when the Watchdog counter reaches the value specified by WDWARNINT. This flag is cleared when any reset occurs, and is cleared by software by writing a 0 to this bit.

A Watchdog reset or interrupt can occur when the watchdog is running and has an operating clock source. Any clock source works in sleep mode.

Table 189. Watchdog operating modes selection

WDEN	WDRESET	Mode of Operation
0	X (0 or 1)	Debug/Operate without the Watchdog running.
1	0	Watchdog interrupt mode: the watchdog warning interrupt will be generated but watchdog reset will not.
		When this mode is selected, the watchdog counter reaching the value specified by WDWARNINT will set the WDINT flag and the Watchdog interrupt request will be generated.
1	1	Watchdog reset mode: both the watchdog interrupt and watchdog reset are enabled.
		When this mode is selected, the watchdog counter reaching the value specified by WDWARNINT will set the WDINT flag and the Watchdog interrupt request will be generated, and the watchdog counter reaching zero will reset the microcontroller. A watchdog feed prior to reaching the value of WDWINDOW will also cause a watchdog reset.

14.6.2 Watchdog Timer Constant register (WDTC)

The WDTC register determines the time-out value. Every time a feed sequence occurs the value in the WDTC is loaded into the Watchdog timer. The WDTC resets to 0x00 00FF. Writing a value below 0xFF will cause 0x00 00FF to be loaded into the WDTC. Thus the minimum time-out interval is $T_{WDCLK} \times 256 \times 4$.

Chapter 14: LPC11Axx WatchDog Timer (WDT)

If the WDPROTECT bit in WDMOD = 1, an attempt to change the value of WDTC before the watchdog counter is below the values of WDWARNINT and WDWINDOW will cause a watchdog reset and set the WDTOF flag.

Table 190. Watchdog Timer Constant register (WDTC - 0x4000 4004) bit description

Bit	Symbol	Description	Reset Value
23:0	Count	Watchdog time-out interval.	0x00 00FF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.6.3 Watchdog Feed register (WDFEED)

Writing 0xAA followed by 0x55 to this register will reload the Watchdog timer with the WDTC value. This operation will also start the Watchdog if it is enabled via the WDMOD register. Setting the WDEN bit in the WDMOD register is not sufficient to enable the Watchdog. A valid feed sequence must be completed after setting WDEN before the Watchdog is capable of generating a reset. Until then, the Watchdog will ignore feed errors.

After writing 0xAA to WDFEED, access to any Watchdog register other than writing 0x55 to WDFEED causes an immediate reset/interrupt when the Watchdog is enabled, and sets the WDTOF flag. The reset will be generated during the second PCLK following an incorrect access to a Watchdog register during a feed sequence.

It is good practise to disable interrupts around a feed sequence, if the application is such that some/any interrupt might result in rescheduling processor control away from the current task in the middle of the feed, and then lead to some other access to the WDT before control is returned to the interrupted task.

Table 191. Watchdog Feed register (WDFEED - 0x4000 4008) bit description

Bit	Symbol	Description	Reset Value
7:0	Feed	Feed value should be 0xAA followed by 0x55.	NA
31:8	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.6.4 Watchdog Timer Value register (WDTV)

The WDTV register is used to read the current value of Watchdog timer counter.

When reading the value of the 24 bit counter, the lock and synchronization procedure takes up to 6 WDCLK cycles plus 6 PCLK cycles, so the value of WDTV is older than the actual value of the timer when it's being read by the CPU.

Table 192. Watchdog Timer Value register (WDTV - 0x4000 400C) bit description

Bit	Symbol	Description	Reset Value
23:0	Count	Counter timer value.	0x00 00FF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 14: LPC11Axx WatchDog Timer (WDT)

14.6.5 Watchdog Clock Select register (WDCLKSEL)

Table 193. Watchdog Clock Select register (WDCLKSEL - 0x4000 4010) bit description

Bit	Symbol	Value	Description	Reset Value
0	CLKSEL		Selects source of WDT clock	0
		0	IRC	
		1	Watchdog oscillator (WDOSC)	
30:1	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
31	LOCK		If this bit is 1, writing to this register does not affect the CLKSEL bit, and therefore the clock source cannot be changed. Once the LOCK bit is set, it cannot be cleared.	0

14.6.6 Watchdog Timer Warning Interrupt register (WDWARNINT)

The WDWARNINT register determines the watchdog timer counter value that will generate a watchdog interrupt. When the watchdog timer counter matches the value defined by WDWARNINT, an interrupt will be generated after the subsequent WDCLK.

A match of the watchdog timer counter to WDWARNINT occurs when the bottom 10 bits of the counter have the same value as the 10 bits of WARNINT, and the remaining upper bits of the counter are all 0. This gives a maximum time of 1,023 watchdog timer counts (4,096 watchdog clocks) for the interrupt to occur prior to a watchdog event. If WARNINT is 0, the interrupt will occur at the same time as the watchdog event.

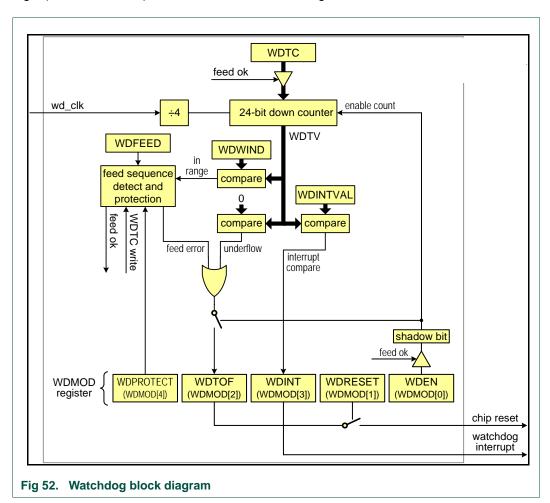
Table 194. Watchdog Timer Warning Interrupt register (WDWARNINT - 0x4000 4014) bit description

Bit	Symbol	Description	Reset Value
9:0	WARNINT	Watchdog warning interrupt compare value.	0
31:10	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

14.6.7 Watchdog Timer Window register (WDWINDOW)

The WDWINDOW register determines the highest WDTV value allowed when a watchdog feed is performed. If a feed sequence occurs when WDTV is greater than the value in WDWINDOW, a watchdog event will occur.

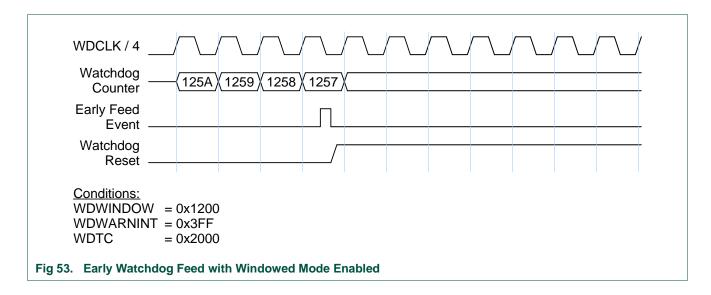
WDWINDOW resets to the maximum possible WDTV value, so windowing is not in effect.

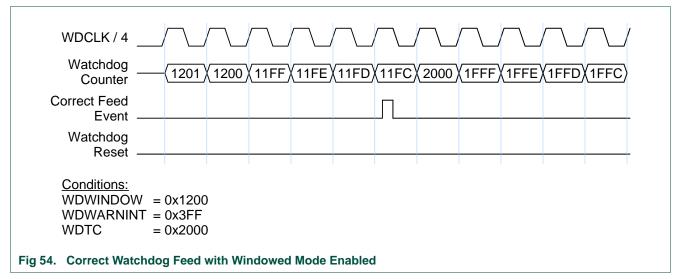

Table 195. Watchdog Timer Window register (WDWINDOW - 0x4000 4018) bit description

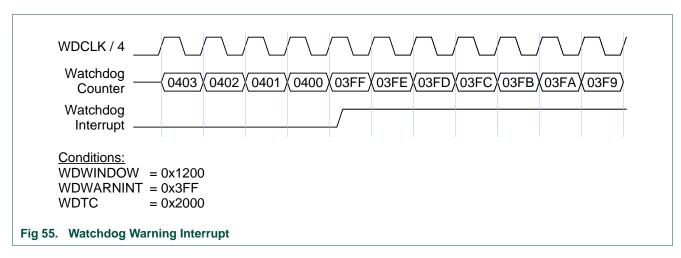
Bit	Symbol	Description	Reset Value
23:0	WINDOW	Watchdog window value.	0xFF FFFF
31:24	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 14: LPC11Axx WatchDog Timer (WDT)

14.7 Block diagram


The block diagram of the Watchdog is shown below in the <u>Figure 52</u>. The synchronization logic (PCLK - WDCLK) is not shown in the block diagram.




14.8 Watchdog timing examples

The following figures illustrate several aspects of Watchdog Timer operation is shown below in Figure 53.

Chapter 14: LPC11Axx WatchDog Timer (WDT)

UM10527

Chapter 15: LPC11Axx Temperature sensor

Rev. 5 — 21 January 2013

User manual

15.1 How to read this chapter

The temperature sensor is identical for all parts.

15.2 Basic configuration

Enable power to the temperature sensor by setting the TS_PD bit to zero in the PDRUNCFG register (Table 33).

15.3 Features

- Output linear within + 2.3 mV over device temperature range
- Power consumption ~ 3 uA
- Virtually V_{DD}-independent over device voltage range

15.4 General description

The temperature sensor outputs an analog voltage that varies inversely with device temperature over the allowed range.

15.5 Operation

The only control bit associated with the temperature sensor is the power control bit described below and in the System Control chapter. The temperature sensor output is available to both the A/D Converter and the Analog Comparator.

For an accurate measurement of the temperature sensor by the ADC, the ADC must be configured in single-channel burst mode. The last value of a nine-conversion (or more) burst provides an accurate result.

After the Temperature Sensor is powered, it requires some time to stabilize and output a voltage that correctly represents the device temperature. A much shorter settling time applies after switching the A/D converter or analog comparator to use the sensor output. Software can deal with both of these factors by repeatedly converting and reading the Temperature Sensor output via the A/D converter, or simply reading the analog comparator, until a consistent result is obtained.

15.6 Register description

The temperature sensor has no user-configurable registers except for the power control located in the in the System Control block. See Table 26.

UM10527

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Rev. 5 — 21 January 2013

User manual

16.1 How to read this chapter

The ADC block is identical for all LPC11Axx parts.

16.2 Basic configuration

The ADC is configured using the following registers:

- 1. Pins: The ADC pin functions are configured in the IOCON register block (Table 84).
- 2. Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 13 (<u>Table 20</u>). Power to the ADC is controlled through the PDRUNCFG register (<u>Table 33</u>).

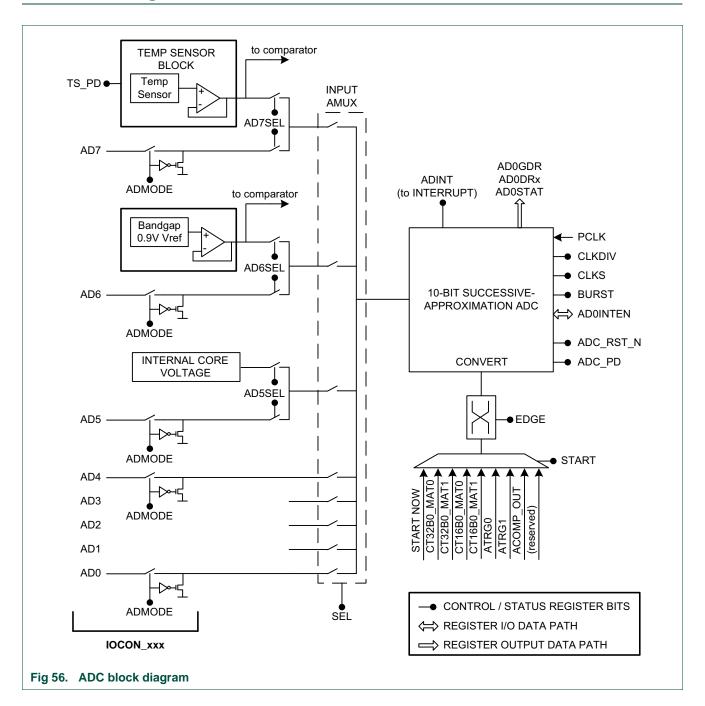
Remark: Clocking for the A/D converters is determined by the APB clock (PCLK). A programmable divider is included in the A/D converter to scale this clock to the 4.5 MHz (max) clock needed by the successive approximation process. An accurate conversion requires 11 clock cycles.

16.3 Features

- 10-bit successive approximation Analog-to-Digital Converter (ADC).
- Input multiplexing among 8 pins and 3 internal sources.
- · Power-down mode.
- Measurement range 0 to 3.6 V. Do not exceed the V_{DD} voltage level.
- 10-bit conversion time \geq 2.44 μ s.
- Burst conversion mode for single or multiple inputs.
- Optional singe-burst mode.
- Optional conversion on transition on input pins ATRG0 or ATRG1, timer match signal, or comparator output.
- Individual result registers for each A/D channel to reduce interrupt overhead.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

16.4 Pin description


Table 196. ADC pin description

	•	•
Pin	Type	Description
AD[7:0]	Input	Analog Inputs. The A/D converter cell can measure the voltage on any of these input signals.
		Remark: While the pins are 5 V tolerant in digital mode, the maximum input voltage must not exceed V_{DD} when the pins are configured as analog inputs.
$V_{DD}/V_{DD(3V3)}$	Input	V _{REF} ; Reference voltage.
ATRG0/1	Input	Input triggers to start a conversion.
		Remark: These input signals as well as all other conversion
		trigger signals must be held for a minimum of three system clock periods.

The ADC function must be selected via the IOCON registers in order to get accurate voltage readings. For a pin hosting an ADC input, it is not possible to have a have a digital function selected and yet get valid ADC readings. An internal circuit disconnects ADC hardware from the associated pin whenever a digital function is selected on that pin.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

16.5 Block diagram

16.6 Register description

The ADC contains registers organized as shown in <u>Table 197</u>.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 197. Register overview: ADC (base address 0x4001 C000)

Name	Access	Address offset	Description	Reset value
CR	R/W	0x000	A/D Control Register. The CR register must be written to select the operating mode before A/D conversion can occur.	0
GDR	RO	0x004	A/D Global Data Register. Contains the result of the most recent A/D conversion.	NA
SEL	R/W	800x0	A/D Select Register. Selects between external pins and internal sources.	0
INTEN	R/W	0x00C	A/D Interrupt Enable Register. This register contains enable bits that allow the DONE flag of each A/D channel to be included or excluded from contributing to the generation of an A/D interrupt.	0x0000 0100
DR0	RO	0x010	A/D Channel 0 Data Register. This register contains the result of the most recent conversion completed on channel 0	NA
DR1	RO	0x014	A/D Channel 1 Data Register. This register contains the result of the most recent conversion completed on channel 1.	NA
DR2	RO	0x018	A/D Channel 2 Data Register. This register contains the result of the most recent conversion completed on channel 2.	NA
DR3	RO	0x01C	A/D Channel 3 Data Register. This register contains the result of the most recent conversion completed on channel 3.	NA
DR4	RO	0x020	A/D Channel 4 Data Register. This register contains the result of the most recent conversion completed on channel 4.	NA
DR5	RO	0x024	A/D Channel 5 Data Register. This register contains the result of the most recent conversion completed on channel 5.	NA
DR6	RO	0x028	A/D Channel 6 Data Register. This register contains the result of the most recent conversion completed on channel 6.	NA
DR7	RO	0x02C	A/D Channel 7 Data Register. This register contains the result of the most recent conversion completed on channel 7.	NA
STAT	RO	0x030	A/D Status Register. This register contains DONE and OVERRUN flags for all of the A/D channels, as well as the A/D interrupt flag.	0

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

16.6.1 A/D Control Register (CR)

The A/D Control Register provides bits to select A/D channels to be converted, A/D timing, A/D modes, and the A/D start trigger.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 198: A/D Control Register (CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Reset value
7:0	SEL		Selects which of the AD7:0 pins is (are) to be sampled and converted. Bit 0 selects Pin AD0, bit 1 selects pin AD1,, and bit 7 selects pin AD7. In software-controlled mode (BURST = 0), only one channel can be selected, i.e. only one of these bits should be 1. In hardware scan mode (BURST = 1), any numbers of channels can be selected, i.e any or all bits can be set to 1. If all bits are 0 (as after Reset) channel 0 is selected automatically.	0
15:8	CLKDIV		The APB clock (PCLK) is divided by CLKDIV +1 to produce the clock for the ADC, which should be less than or equal to 4.5 MHz. Typically, software should program the smallest value in this field that yields a clock of 4.5 MHz or slightly less, but in certain cases (such as a high-impedance analog source) a slower clock may be desirable.	0
16	BURST		Burst mode	0
		0	Software-controlled mode: Conversions are software-controlled and require 11 clocks.	
		1	Hardware scan mode: The AD converter does repeated conversions at the rate selected by the CLKS field, scanning (if necessary) through the pins selected by 1s in the SEL field. The first conversion after the start corresponds to the least-significant bit set to 1 in the SEL field, then the next higher bits (pins) set to 1 are scanned if applicable. Repeated conversions can be terminated by clearing this bit, but the conversion in progress when this bit is cleared will be completed.	
			If bit 20 in this register is set (single-burst mode), hardware clears this bit automatically after one set of conversions on all of the selected channels.	
19:17	CLKS		This field selects the number of clocks used for each conversion in Burst mode, and the number of bits of accuracy of the result in the LS bits of ADDR, between 11 clocks (10 bits) and 4 clocks (3 bits).	000
		0x0	11 clocks / 10 bits	
		0x1	10 clocks / 9 bits	
		0x2	9 clocks / 8 bits	
		0x3	8 clocks / 7 bits	
		0x4	7 clocks / 6 bits	
		0x5	6 clocks / 5 bits	
		0x6	5 clocks / 4 bits	
		0x7	4 clocks / 3 bits	
20	SINGLE		Single-burst mode	0
	BURST	0	Continuous. Burst mode can only be terminated via a software write to clear bit 16 in this register.	
		1	Single-burst. When the burst mode is selected by writing a 1 to bit 16 in this register, the ADC cycles through a single set of conversions on the selection of channels specified in the SEL field. Once the conversion has been completed on each selected channel, bit 16 is automatically cleared and the conversions stop until a new trigger event occurs.	
22:21	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 198: A/D Control Register (CR - address 0x4001 C000) bit description

Bit	Symbol	Value	Description	Reset value
26:23	START		When the BURST bit is 0, these bits control whether/when an A/D conversion is started. All other values are reserved.	0
		0x0	No start (this value should be used when clearing PDN to 0).	
		0x2	Start conversion now.	
		0x4	Start conversion when the edge selected by bit 27 occurs on ATRG0.	
		0x5	Start conversion when the edge selected by bit 27 occurs on the analog comparator output.	
		0x6	Start conversion when the edge selected by bit 27 occurs on ATRG1.	
		0x8	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT0[1].	
		0xA	Start conversion when the edge selected by bit 27 occurs on CT32B0_MAT1[1].	
		0xC	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT0[1].	
		0xE	Start conversion when the edge selected by bit 27 occurs on CT16B0_MAT1[1].	
27	EDGE		This bit is significant only when the START field contains 0100-1110. In these cases:	0
		0	Start conversion on a rising edge on the selected signal.	
		1	Start conversion on a falling edge on the selected signal.	
31:28	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

^[1] Note that this does not require that the timer match function appear on a device pin.

16.6.2 A/D Global Data Register (GDR)

The A/D Global Data Register contains the result of the most recent A/D conversion. This includes the data, DONE, and Overrun flags, and the number of the A/D channel to which the data relates.

Table 199: A/D Global Data Register (GDR - address 0x4001 C004) bit description

Bit	Symbol	Description	Reset value
5:0	-	Reserved. These bits always read as zeroes.	0
15:6	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin selected by the SEL field, divided by the voltage on the V_{DD} pin. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on $V_{SS},$ while $0x3FF$ indicates that the voltage on ADn was close to, equal to, or greater than that on $V_{REF}.$	X
23:16	-	Reserved. These bits always read as zeroes. They allow accumulation of successive A/D values without AND-masking, for at least 256 values without overflow into the CHN field.	0
26:24	CHN	These bits contain the channel from which the LS bits were converted.	X

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 199: A/D Global Data Register (GDR - address 0x4001 C004) bit description

Bit	Symbol	Description	Reset value
29:27	-	Reserved. These bits always read as zeroes.	0
30	OVERRUN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the LS bits. In non-FIFO operation, this bit is cleared by reading this register.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read and when the ADCR is written. If the ADCR is written while a conversion is still in progress, this bit is set and a new conversion is started.	0

16.6.3 A/D Select Register (SEL)

The A/D Select Register extends the scope of the A/D Converter to internal signals as well as external inputs, controlling analog switches that select between them.

Table 200: A/D Select Register (SEL - address 0x4001 C008) bit description

Bit	Symbol	Value	Description	Reset value
9:0	-		Reserved. Always write zeroes to these bits.	Χ
11:10	AD5SEL		This field selects the source signal for channel 5.	00
		0x0	AD5 pin	
		0x1	No connection or load	
		0x2	Core voltage regulator output (1.2 to 1.8V)	
		0x3	Reserved. Do not program this value.	
13:12	AD6SEL		This field selects the source signal for channel 6.	00
		0x0	AD6 pin	
		0x1	No connection or load	
		0x2	Internal voltage reference	
		0x3	Reserved. Do not program this value.	
15:14	AD7SEL		This field selects the source signal for channel 7.	00
		0x0	AD7 pin	
		0x1	No connection or load	
		0x2	Temperature sensor	
		0x3	Reserved. Do not program this value.	
31:16	-		Reserved. Always write zeroes to these bits.	Х

16.6.4 A/D Status Register (STAT)

The A/D Status register allows checking the status of all A/D channels simultaneously. The DONE and OVERRUN flags appearing in the ADDRn register for each A/D channel are mirrored in ADSTAT. The interrupt flag (the logical OR of all DONE flags) is also found in ADSTAT.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 201: A/D Status Register (STAT - address 0x4001 C030) bit description

Bit	Symbol	Description	Reset Value
7:0	DONE	These bits mirror the DONE status flags that appear in the result register for each A/D channel.	0
15:8	OVERRUN	These bits mirror the OVERRUN status flags that appear in the result register for each A/D channel. Reading ADSTAT allows checking the status of all A/D channels simultaneously.	0
16	ADINT	This bit is the A/D interrupt flag. It is one when any of the individual A/D channel Done flags is asserted and enabled to contribute to the A/D interrupt via the ADINTEN register.	0
31:17	-	Reserved. Always 0.	0

16.6.5 A/D Interrupt Enable Register (INTEN)

This register allows control over which A/D channels generate an interrupt when a conversion is complete. For example, it may be desirable to use some A/D channels to monitor sensors by continuously performing conversions on them. The most recent results are read by the application program whenever they are needed. In this case, an interrupt is not desirable at the end of each conversion for some A/D channels.

Table 202: A/D Interrupt Enable Register (INTEN - address 0x4001 C00C) bit description

Bit	Symbol	Description	Reset Value
7:0	ADINTEN	These bits allow control over which A/D channels generate interrupts for conversion completion. When bit 0 is one, completion of a conversion on A/D channel 0 will generate an interrupt, when bit 1 is one, completion of a conversion on A/D channel 1 will generate an interrupt, etc.	0x00
8	ADGINTEN	When 1, enables the global DONE flag in ADDR to generate an interrupt. When 0, only the individual A/D channels enabled by ADINTEN 7:0 will generate interrupts.	1
31:9	-	Reserved. Always 0.	0

16.6.6 A/D Data Registers (DR0 to DR7)

The A/D Data Register hold the result when an A/D conversion is complete, and also include the flags that indicate when a conversion has been completed and when a conversion overrun has occurred.

Chapter 16: LPC11Axx Analog-to-Digital Converter (ADC)

Table 203: A/D Data Registers (DR0 to DR7 - addresses 0x4001 C010 to 0x4001 C02C) bit description

Bit	Symbol	Description	Reset Value
5:0	-	Reserved. These bits always read as zeroes.	0
15:6	V_VREF	When DONE is 1, this field contains a binary fraction representing the voltage on the ADn pin, divided by the voltage on the V_{REF} pin. Zero in the field indicates that the voltage on the ADn pin was less than, equal to, or close to that on V_{REF} , while 0x3FF indicates that the voltage on AD input was close to, equal to, or greater than that on V_{REF} .	NA
29:16	-	Reserved. These bits always read as zeroes. They allow accumulation of successive A/D values without AND-masking for at least 256 values without overflow into the CHN field.	0
30	OVERRUN	This bit is 1 in burst mode if the results of one or more conversions was (were) lost and overwritten before the conversion that produced the result in the LS bits. This bit is cleared by reading this register.	0
31	DONE	This bit is set to 1 when an A/D conversion completes. It is cleared when this register is read.	0

16.7 Functional description

16.7.1 Hardware-triggered conversion

If the BURST bit in the ADCR0 is 0 and the START field contains 0100-1110, the A/D converter will start a conversion when a transition occurs on a selected pin or timer match signal.

16.7.2 Interrupts

An interrupt is requested to the interrupt controller when the ADINT bit in the ADSTAT register is 1. The ADINT bit is one when any of the DONE bits of A/D channels that are enabled for interrupts (via the ADINTEN register) are one. Software can use the Interrupt Enable bit in the interrupt controller that corresponds to the ADC to control whether this results in an interrupt. The result register for an A/D channel that is generating an interrupt must be read in order to clear the corresponding DONE flag.

16.7.3 Accuracy vs. digital receiver

While the A/D converter can be used to measure the voltage on any ADC input pin, regardless of the pin's setting in the IOCON block, clearing the ADMODE bit in the pin's IOCON register improves conversion accuracy by disabling the pin's digital receiver (see Section 6.3.5).

16.7.4 Sampling/Conversion frequency

Applications that use trigger signals to start conversions, and require a precise sampling/conversion frequency, should ensure that the period of the trigger signal is an integer multiple of the period of the ADC clock.

UM10527

Chapter 17: LPC11Axx Digital-to-Analog Converter (DAC)

Rev. 5 — 21 January 2013

User manual

17.1 How to read this chapter

The DAC block is identical for all LPC11Axx parts, although the number of available triggering inputs will vary among them.

17.2 Basic configuration

The DAC is configured using the following registers:

- 1. Pins: The DAC output pin is configured in the IOCON register block (Table 84).
- Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 21 (<u>Table 20</u>).
 Power to the DAC is controlled through the PDRUNCFG register (<u>Table 33</u>).

17.3 Features

- 10-bit digital to analog converter
- Resistor string architecture
- Buffered output
- Power-down mode
- Selectable speed vs. power
- Maximum update rate of 1 MHz
- Conversion can be triggered by a selected edge on an internal or external signal
- Interrupt option when an edge triggers a conversion

17.4 Pin description

<u>Table 204</u> describes the DAC output. This output is driven out onto a pin selected as described in <u>Section 6.4.1 "I/O configuration registers"</u>.

Table 204. D/A pin description

Pin	Туре	Description
AOUT	Output	Analog Output. After the selected settling time after a conversion starts, the voltage on this signal (with respect to V_{SS}) is VALUE \times ($V_{DD}/1024$).

5. Register description

Table 205. Register overview: DAC (base address 0x4002 4000)

Name	Access	Address offset	Description	Reset value
CR	R/W	0x000	D/A control register	0

^[1] Reset Value reflects the data stored in used bits only. It does not include reserved bits content.

UM10527

Chapter 17: LPC11Axx Digital-to-Analog Converter (DAC)

17.5.1 D/A Control Register (CR)

This read/write register includes the digital value to be converted to analog, and a bit that trades off performance vs. power. Bits 5:0 are reserved for future, higher-resolution D/A converters.

Table 206: D/A Converter Register (CR - address 0x4002 4000) bit description

Bit	Symbol	Value	Description	Reset Value
5:0	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
15:6	VALUE		After the selected settling time after a conversion begins, the voltage on the AOUT pin (with respect to V_{SS}) is VALUE \times ($V_{DD}/1024$).	0
16	BIAS		Settling time. The settling times noted in the description of the BIAS bit are valid for a capacitance load on the AOUT pin not exceeding 100 pF. A load impedance value greater than that value will cause settling time longer than the specified time.	0
		0	The settling time of the DAC is 1 μ s max ^[2] , and the maximum current is 700 μ A. This allows a maximum update rate of 1 MHz ^[2] .	ts. NA e 0 0 e m n 000 er til
		1	The settling time of the DAC is 2.5 μs^{2} and the maximum current is 350 μ A. This allows a maximum update rate of 400 kHz ² .	
19:17	TRIG		The value written to this field determines whether conversion begins immediately after this register is written, or whether conversion is delayed until a selected event occurs.	000
		0x0	Conversion begins when this register is written, and AOUT begins to change to the new voltage immediately. For all other values in this field, AOUT remains at its previous voltage until the selected event has occurred.	
		0x1	Conversion is triggered by the selected edge(s) on the analog comparator (level) output	
		0x2	Conversion is triggered by the selected edge(s) on ATRG0.	
		0x3	Conversion is triggered by the selected edge(s) on ATRG1.	
		0x4	Conversion is triggered by the selected edge(s) on CT32B1_MAT0[1].	
		0x5	Conversion is triggered by the selected edge(s) on CT32B1_MAT1[1].	
		0x5	Conversion is triggered by the selected edge(s) on CT16B1_MAT0[1].	
		0x7	Conversion is triggered by the selected edge(s) on CT16B1_MAT1[1].	
20	-		Reserved.	NA

Chapter 17: LPC11Axx Digital-to-Analog Converter (DAC)

Table 206: D/A Converter Register (CR - address 0x4002 4000) bit description

Bit	Symbol	Value	Description	Reset Value
22:21 EDGESEL			For non-zero values of TRIG, this field selects when the conversion is triggered:	00
		0x0	Falling edges	
		0x1	Rising edges	
		0x2	Both edges	
		0x3	Both edges	
23	TRIGERD		If the TRIG field (above) is non-zero, this bit is set when a conversion is triggered, and is cleared by any write to this register.	0
31:24	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

^[1] Note that this does not require that the timer match function appear on a device pin.

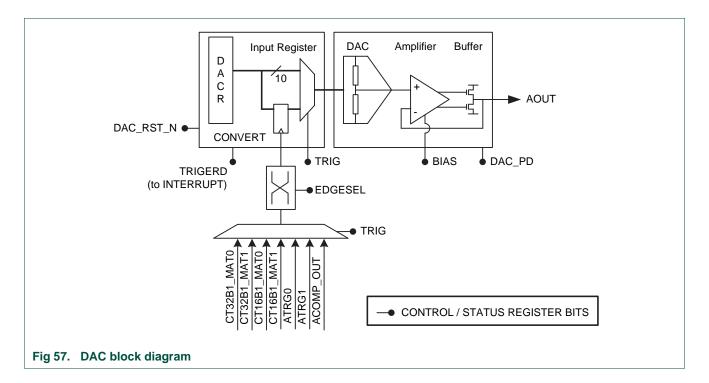
17.5.2 Power-Down Control

Power control of the DAC is implemented in the System Control block. See Table 33.

17.6 Operation

17.6.1 Hardware-triggered conversion

If the TRIG field is non-zero, the D/A converter will start a conversion when a transition occurs on a selected pin or timer match signal.


17.6.2 Interrupts

An interrupt request is asserted to the interrupt controller when the TRIGERD bit in the DACR is 1. Software can use the Interrupt Enable bit that corresponds to the DAC in the interrupt controller to control whether this results in an interrupt. Software can write to the DACR to clear the request.

^[2] These times/frequencies are guaranteed if VDD >= 2.4V. Below that voltage, check the LPC11Axx data sheet for derating information.

Chapter 17: LPC11Axx Digital-to-Analog Converter (DAC)

7. Block diagram

UM10527

Chapter 18: LPC11Axx Analog comparator

Rev. 5 — 21 January 2013

User manual

18.1 How to read this chapter

The Analog comparator block is identical for all LPC11Axx parts.

The pinout of the VDDCMP pin is different for the WLCSP and the HVQFN and LQFP packages. See Table 207.

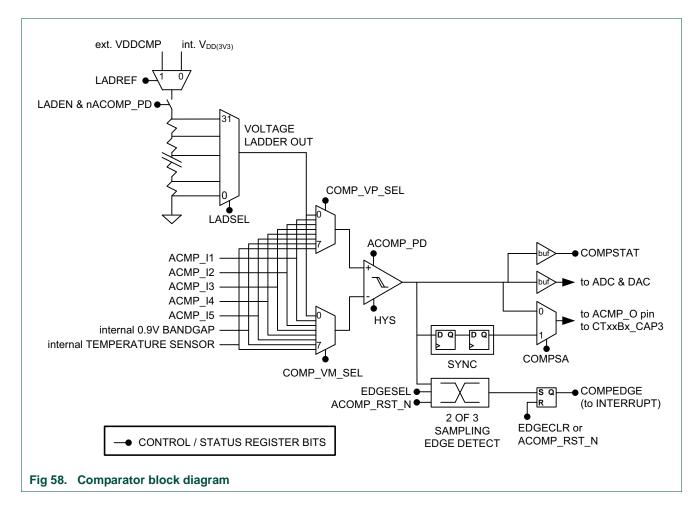
Table 207. VDDCMP pin location

Package	VDDCMP pin location
WLCSP	PIO0_5
LQFP	PIO0_14
HVQFN	PIO0_14

18.2 Basic configuration

The analog comparator is configured using the following registers:

- Pins: The analog comparator pin functions are configured in the IOCON register block (<u>Table 85</u>).
- Power and peripheral clock: In the SYSAHBCLKCTRL register, set bit 20 (<u>Table 20</u>). Power to the analog comparator is controlled through the PDRUNCFG register (<u>Table 33</u>).


18.3 Features

- Selectable external inputs can be used as either the positive or negative input of the comparator.
- Internal voltage reference and temperature sensor can be used as either the positive or negative input of the comparator.
- 32-stage voltage ladder can be used as either the positive or negative input of the comparator.
- Voltage ladder source selectable between the V_{DD}/V_{DD(3V3)} or VDDCMP pin.
- Voltage ladder can be separately powered down when not required.
- Interrupt capability

18.4 General description

The analog comparator can compare voltage levels on external pins and internal voltages.

Chapter 18: LPC11Axx Analog comparator

The comparator has 8 inputs multiplexed separately to its positive and negative inputs. The multiplexers are controlled by the comparator register CTL (see <u>Figure 58</u> and <u>Table 210</u>).

Input 0 of the multiplexers is the programmable voltage ladder output.

Bits 5:1 come from external inputs ACMP I[5:1].

Bits 6 and 7 of the multiplexors are the internal reference voltage and temperature sensor, respectively.

18.5 Pin description

Table 208. Comparator pin description

Pin	Туре	Description
ACMP_I[5:1]	input	Comparator input sources
ACMP_O	output	Comparator output
VDDCMP	input	External reference voltage source for 32-stage Voltage Ladder. For package-specific pinouts, see <u>Section 18.1</u> .

Chapter 18: LPC11Axx Analog comparator

18.6 Register description

Table 209. Register overview: Analog comparator (base address 0x4002 8000)

Name	Access	Address offset	Description	Reset value
CTL	R/W	0x000	Comparator control register	0
LAD	R/W	0x004	Voltage ladder register	0

18.6.1 Comparator control register (CTL)

This register enables the comparator, configures the interrupts, and controls the input multiplexers on both sides of the comparator. All bits not shown in <u>Table 210</u> are reserved and should be written as 0.

Table 210. Comparator control register (CTL, address 0x4002 8000) bit description

Bit	Symbol	Value	Description	Reset value			
2:0	-		Reserved. Write as 0.	0			
4:3	EDGESEL		This field controls which edges on the comparator output set the COMPEDGE bit (bit 23 below): 00 = Falling edges 01 = Rising edges 1x = Both edges	0			
		0x0	Falling edges				
		0x1	Rising edges				
		0x2	Both edges				
		0x3	Both edges				
5	-		Reserved. Write as 0.	0			
6	COMPSA		Comparator output control	0			
		0	Comparator output directly is used directly.				
				1	1	1	Comparator output is synchronized to the bus clock for output to other modules.
7	-		Reserved. Write as 0.	0			
10:8	COMP_VP_SEL		Selects positive voltage input	0			
		0x0	Voltage ladder output				
		0x1	ACMP_I1				
		0x2	ACMP_I2				
		0x3	ACMP_I3				
		0x4	ACMP_I4				
		0x5	ACMP_I5				
		0x6	Internal reference voltage				
		0x7	Temperature sensor				

Chapter 18: LPC11Axx Analog comparator

Table 210. Comparator control register (CTL, address 0x4002 8000) bit description

Bit	Symbol	Value	Description	Reset value
13:11	COMP_VM_SEL		Selects negative voltage input	0
		0x0	voltage ladder output	
		0x1	ACMP_I1	
		0x2	ACMP_I2	
		0x3	ACMP_I3	
		0x4	ACMP_I4	
		0x5	ACMP_I5	
		0x6	internal reference voltage	
19:14	-		Reserved. Write as 0.	0
20	EDGECLR		Interrupt clear bit. To clear the COMPEDGE bit and thus negate the interrupt request, toggle the EDGECLR bit by first writing a 1 and then a 0.	0
21	COMPSTAT		Comparator status. This bit reflects the state of the comparator output.	0
22	-		Reserved. Write as 0.	0
23	COMPEDGE		Comparator edge-detect status.	0
24	-		Reserved. Write as 0.	0
26:25	HYS		Controls the hysteresis of the comparator. When the comparator is outputting a certain state, this is the difference between the selected signals, in the opposite direction from the state being output, that will switch the output.	0
		0x0	None (the output will switch as the voltages cross)	
		0x1	5 mV	
		0x2	10 mV	
		0x3	20 mV	
31:27	•		Reserved	-

18.6.2 Voltage ladder register (LAD)

This register enables and controls the voltage ladder. The fraction of the reference voltage produced by the ladder is programmable in steps of 1/31.

Table 211. Voltage ladder register (LAD, address 0x4002 8004) bit description

Bit	Symbol	Value	Description	Reset value
0	LADEN		Voltage ladder enable	0
5:1	LADSEL		Voltage ladder value. The reference voltage Vref depends on the LADREF bit below. $00000 = V_{SS} \\ 00001 = 1 \times Vref/31 \\ 00010 = 2 \times Vref/31 \\ \\ 11111 = Vref$	0

Chapter 18: LPC11Axx Analog comparator

Table 211. Voltage ladder register (LAD, address 0x4002 8004) bit description

Bit	Symbol	Value	Description	Reset value
6	LADREF		Selects the reference voltage Vref for the voltage ladder:	0
		0	$V_{DD}/V_{DD(3V3)}$ pin	
		1	VDDCMP pin	
31:7	-		Unused	0

18.7 Functional description

18.7.1 Reference voltages

The voltage ladder can use two reference voltages, from the VDDCMP or the $V_{DD}/V_{DD(3V3)}$ pin. The voltage ladder selects one of 32 steps between the pin voltage and V_{SS} inclusive. The voltage on VDDCMP should not exceed that on $V_{DD}/V_{DD(3V3)}$.

18.7.2 Settling times

After the voltage ladder is powered on, it requires stabilization time until comparisons using it are accurate. Much shorter settling times apply after the LADSEL value is changed and when either or both voltage sources are changed. Software can deal with these factors by repeatedly reading the comparator output until a number of readings yield the same result. See the LPC11Axx Data Sheet for quantitative settling times.

18.7.3 Interrupts

The interrupt output comes from edge detection circuitry in this module. Rising edges, falling edges, or both edges can set the COMPEDGE bit and thus request an interrupt. COMPEDGE and the interrupt request are cleared when software writes a 1 to EDGECLR.

18.7.4 Comparator outputs

The comparator output (conditioned by COMPSA bit) can be routed to an external pin. When COMPSA is 0 and the comparator interrupt is disabled, the comparator can be used with the bus clock disabled (<u>Section 3.5.15 "System clock control register"</u>), to save power if the control registers don't need to be written.

The status of the comparator output can be observed through the comparator status register bit.

The comparator output is routed to the CAP3 inputs of each timer/counter allowing to capture the time of a voltage crossing or to count crossings in either or both directions.

UM10527

Chapter 19: LPC11Axx Internal voltage reference

Rev. 5 — 21 January 2013

User manual

19.1 How to read this chapter

The internal voltage reference is available on all parts.

19.2 Features

- Used for Brown-out detection
- Can be used as input to A/D Converter and Analog comparator

19.3 General description

The internal voltage reference is a bandgap circuit that generates a reference voltage of about 0.9 V. This circuit is part of the Brown-out detection (BOD) module, and can be used for cross-calibration via the A/D Converter and Analog comparator modules.

19.4 Register description

The internal voltage reference has no configurable registers.

19.5 Functional description

After the internal voltage reference is powered, it requires some time to stabilize and output a consistent voltage. A much shorter settling time applies after switching the A/D converter or analog comparator to use the voltage reference output. Software can deal with both of these factors by repeatedly converting and reading the A/D Converter output, or simply reading the voltage comparator, until a consistent result is obtained. See the LPC11Axx Data Sheet for quantitative details on stabilization.

UM10527

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Rev. 5 — 21 January 2013

User manual

20.1 How to read this chapter

See Table 212 for LPC11Axx flash configurations.

Table 212. LPC11Axx flash configuration

-	
Part	Flash
LPC11A02UK	16 kB
LPC11A04UK	32 kB
LPC11A11	8 kB
LPC11A12	16 kB
LPC11A13	24 kB
LPC11A14	32 kB

Remark: In addition to the ISP and IAP commands, a register can be accessed in the flash controller block to configure flash memory access times, see <u>Table 249</u>.

20.2 Boot loader

The boot loader controls initial operation after reset and also provides the means to accomplish programming of the flash memory. This could be initial programming of a blank device, erasure and re-programming of a previously programmed device, or programming of the flash memory by the application program in a running system.

Remark: SRAM location 0x1000 0000 to 0x1000 0050 is not used by the boot loader and the memory content in this area is retained during reset. SRAM memory is not retained when the part is powered down.

20.3 Features

- In-System Programming: In-System programming (ISP) is programming or reprogramming the on-chip flash memory, using the boot loader software and UART serial port. This can be done when the part resides in the end-user board.
- In-Application Programming: In-Application (IAP) programming is performing erase and write operation on the on-chip flash and EEPROM memories, as directed by the end-user application code.
- Flash access times can be configured through a register in the flash controller block.

20.4 Applications

The boot loader provides both In-System and In-Application programming interfaces for programming the on-chip flash and EEPROM memories.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.5 Description

The boot loader code is executed every time the part is powered on or reset. The loader can execute the ISP command handler or the user application code. A LOW level after reset on the PIO0_1 pin is considered as an external hardware request to start the ISP command handler. Assuming that power supply pins are on their nominal levels when the rising edge on RESET pin is generated, it may take up to 3 ms before PIO0_1 is sampled and the decision on whether to continue with user code or ISP handler is made. If PIO0_1 is sampled low and the watchdog overflow flag is set, the external hardware request to start the ISP command handler is ignored. If there is no request for the ISP command handler execution (PIO0_1 is sampled HIGH after reset), a search is made for a valid user program. If a valid user program is found then the execution control is transferred to it. If a valid user program is not found, the auto-baud routine is invoked.

Pin PIOO_1 that is used as hardware request for ISP requires no special attention. Since PIOO_1 is in pull-up mode after reset, the default operation is to check for valid user code.

20.5.1 Memory map after any reset

The boot block is 16 kB in size. The boot block is located in the memory region starting from the address 0x1FFF 0000. The boot loader is designed to run from this memory area, but both the ISP and IAP software use parts of the on-chip RAM. The RAM usage is described later in this chapter. The interrupt vectors residing in the boot block of the on-chip flash memory also become active after reset, i.e., the bottom 512 bytes of the boot block are also visible in the memory region starting from the address 0x0000 0000.

20.5.1.1 Criterion for Valid User Code

Criterion for valid user code: The reserved Cortex-M0 exception vector location 7 (offset 0x 0000 001C in the vector table) should contain the 2's complement of the check-sum of table entries 0 through 6. This causes the checksum of the first 8 table entries to be 0. The boot loader code checksums the first 8 locations in sector 0 of the flash. If the result is 0, then execution control is transferred to the user code.

If the signature is not valid, the auto-baud routine synchronizes with the host via serial port 0. The host should send a '?' (0x3F) as a synchronization character and wait for a response. The host side serial port settings should be 8 data bits, 1 stop bit and no parity. The auto-baud routine measures the bit time of the received synchronization character in terms of its own frequency and programs the baud rate generator of the serial port. It also sends an ASCII string ("Synchronized<CR><LF>") to the Host. In response to this host should send the same string ("Synchronized<CR><LF>"). The auto-baud routine looks at the received characters to verify synchronization. If synchronization is verified then "OK<CR><LF>" string is sent to the host. Host should respond by sending the crystal frequency (in kHz) at which the part is running. For example, if the part is running at 10 MHz, the response from the host should be "10000<CR><LF>". "OK<CR><LF>" string is sent to the host after receiving the crystal frequency. If synchronization is not verified then the auto-baud routine waits again for a synchronization character. For auto-baud to work correctly in case of user invoked ISP, the CCLK frequency should be greater than or equal to 10 MHz.

Once the crystal frequency is received the part is initialized and the ISP command handler is invoked. For safety reasons an "Unlock" command is required before executing the commands resulting in flash erase/write operations and the "Go" command. The rest of

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

the commands can be executed without the unlock command. The Unlock command is required to be executed once per ISP session. The Unlock command is explained in Section 20.7 "ISP commands" on page 241.

20.5.2 Communication protocol

All ISP commands should be sent as single ASCII strings. Strings should be terminated with Carriage Return (CR) and/or Line Feed (LF) control characters. Extra <CR> and <LF> characters are ignored. All ISP responses are sent as <CR><LF> terminated ASCII strings. Data is sent and received in UU-encoded format.

20.5.2.1 Connections

On the LPC11Axx, the RXD function on PIO0_12 and the TXD function on PIO0_13 are used for ISP communication.

20.5.2.2 ISP command format

"Command Parameter_0 Parameter_1 ... Parameter_n<CR><LF>" "Data" (Data only for Write commands).

20.5.2.3 ISP response format

"Return_Code<CR><LF>Response_0<CR><LF>Response_1<CR><LF> ... Response_n<CR><LF>"Data" (Data only for Read commands).

20.5.2.4 ISP data format

The data stream is in UU-encode format. The UU-encode algorithm converts 3 bytes of binary data in to 4 bytes of printable ASCII character set. It is more efficient than Hex format which converts 1 byte of binary data in to 2 bytes of ASCII hex. The sender should send the check-sum after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. The receiver should compare it with the check-sum of the received bytes. If the check-sum matches then the receiver should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match the receiver should respond with "RESEND<CR><LF>". In response the sender should retransmit the bytes.

A description of UU-encoding is available at wikipedia.org/wiki/Uuencoding.

20.5.2.5 ISP flow control

A software XON/XOFF flow control scheme is used to prevent data loss due to buffer overrun. When the data arrives rapidly, the ASCII control character DC3 (stop) is sent to stop the flow of data. Data flow is resumed by sending the ASCII control character DC1 (start). The host should also support the same flow control scheme.

20.5.2.6 ISP command abort

Commands can be aborted by sending the ASCII control character "ESC". This feature is not documented as a command under "ISP Commands" section. Once the escape code is received the ISP command handler waits for a new command.

20.5.2.7 Interrupts during ISP

The boot block interrupt vectors located in the boot block of the flash are active after any reset.

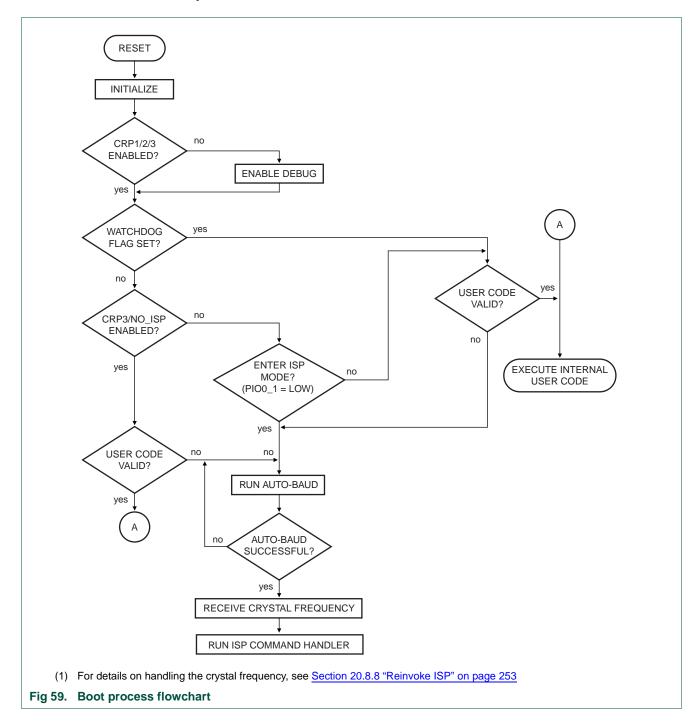
UM10527

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.5.2.8 Interrupts during IAP

The on-chip flash memory is not accessible during erase/write operations. When the user application code starts executing the interrupt vectors from the user flash area are active. Before making any IAP call, either disable the interrupts or ensure that the user interrupt vectors are active in RAM and that the interrupt handlers reside in RAM. The IAP code does not use or disable interrupts.

20.5.2.9 RAM used by ISP command handler


ISP commands use on-chip RAM from $0x1000\ 017C$ to $0x1000\ 025B$. The user could use this area, but the contents may be lost upon reset. Flash programming commands use the top 32 bytes of on-chip RAM. The stack is located at RAM top - 32. The maximum stack usage is 256 bytes and it grows downwards.

20.5.2.10 RAM used by IAP command handler

Flash programming commands use the top 32 bytes of on-chip RAM. The maximum stack usage in the user allocated stack space is 128 bytes and it grows downwards.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.5.3 Boot process flowchart

20.5.4 Sector numbers

Some IAP and ISP commands operate on "sectors" and specify sector numbers. The following table shows the correspondence between sector numbers and memory addresses for LPC11Axx devices.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 213. Sectors in a LPC11Axx device

Sector number	Sector size	Address range	LPC11A02UK	LPC11A04UK	LPC11A11	LPC11A12	LPC11A13	LPC11A14
0	4 kB	0x0000 0000 - 0x0000 0FFF	yes	yes	yes	yes	yes	yes
1	4 kB	0x0000 1000 - 0x0000 1FFF	yes	yes	yes	yes	yes	yes
2	4 kB	0x0000 2000 - 0x0000 2FFF	yes	yes	-	yes	yes	yes
3	4 kB	0x0000 3000 - 0x0000 3FFF	yes	yes	-	yes	yes	yes
4	4 kB	0x0000 4000 - 0x0000 4FFF	-	yes	-	-	yes	yes
5	4 kB	0x0000 5000 - 0x0000 5FFF	-	yes	-	-	yes	yes
6	4 kB	0x0000 6000 - 0x0000 6FFF	-	yes	-	-	-	yes
7	4 kB	0x0000 7000 - 0x0000 7FFF	-	yes	-	-	-	yes

20.6 Code Read Protection (CRP)

Code Read Protection is a mechanism that allows the user to enable different levels of security in the system so that access to the on-chip flash and use of the ISP can be restricted. When needed, CRP is invoked by programming a specific pattern in flash location at 0x0000 02FC. IAP commands are not affected by the code read protection.

Important: any CRP change becomes effective only after the device has gone through a power cycle.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 214. Code Read Protection options

Name	Pattern programmed in 0x0000 02FC	Description
NO_ISP	0x4E69 7370	Prevents sampling of pin PIO0_1 for entering ISP mode. PIO0_1 is available for other uses.
CRP1	0x12345678	Debugging via the JTAG or Serial Wire pins is disabled. JTAG boundary scan is operational. This mode allows partial flash update using the following ISP commands and restrictions:
		 Write to RAM command should not access RAM below 0x1000 0300. Access below 0x1000 0200 is disabled.
		 Copy RAM to flash command can not write to Sector 0.
		 Erase command can erase Sector 0 only when all sectors are selected for erase.
		 Compare command is disabled.
		 Read Memory command is disabled.
		 Blank check command reports blank sectors only. Offset and value of non-blank sectors are always reported as 0.
		This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. Since compare command is disabled in case of partial updates the secondary loader should implement checksum mechanism to verify the integrity of the flash.
CRP2	0x87654321	Debugging via the JTAG or Serial Wire pins is disabled. JTAG boundary scan is operational. The following ISP commands are disabled:
		Read Memory
		Write to RAM
		• Go
		 Copy RAM to flash
		Compare
		 Blank check command reports blank sectors only. Offset and value of non-blank sectors are always reported as 0.
		When CRP2 is enabled the ISP erase command only allows erasure of all user sectors.
CRP3	0x43218765	Debugging via the JTAG or Serial Wire pins is disabled. JTAG boundary scan is operational. ISP entry by pulling PIO0_1 LOW is disabled if a valid user code is present in flash sector 0.
		This mode effectively disables ISP override using PIO0_1 pin. It is up to the user's application to provide a flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART.
		Caution: If CRP3 is selected, no future factory testing can be performed on the device.

239 of 379

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 215. Code Read Protection hardware/software interaction

CRP option	User Code Valid	PIO0_1 pin at reset	JTAG/SW debug enabled	Device enters ISP mode	partial flash update in ISP mode
No	No	x	Yes	Yes	Yes
No	Yes	High	Yes	No	NA
No	Yes	Low	Yes	Yes	Yes
CRP1	Yes	High	No	No	NA
CRP1	Yes	Low	No	Yes	Yes
CRP2	Yes	High	No	No	NA
CRP2	Yes	Low	No	Yes	No
CRP3	Yes	Х	No	No	NA
CRP1	No	Х	No	Yes	Yes
CRP2	No	х	No	Yes	No
CRP3	No	X	No	Yes	No

Table 216. ISP commands allowed by CRP levels

ISP command	CRP1	CRP2	CRP3 (no entry in ISP mode allowed)
Unlock	yes	yes	n/a
Set Baud Rate	yes	yes	n/a
Echo	yes	yes	n/a
Write to RAM	yes; above 0x1000 0300 only	no	n/a
Read Memory	no	no	n/a
Prepare sector(s) for write operation	yes	yes	n/a
Copy RAM to flash	yes; not to sector 0	no	n/a
Go	no	no	n/a
Erase sector(s)	yes; sector 0 can only be erased when all sectors are erased.	yes; all sectors only	n/a
Blank check sector(s)	yes; reports blank sectors only	yes; reports blank sectors only	n/a
Read Part ID	yes	yes	n/a
Read Boot code version	yes	yes	n/a
Compare	no	no	n/a
ReadUID	yes	yes	n/a

In case a CRP mode is enabled and access to the chip is allowed via the ISP, an unsupported or restricted ISP command will be terminated with return code CODE_READ_PROTECTION_ENABLED.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.6.1 ISP entry protection

In addition to the three CRP modes, the user can prevent the sampling of pin PIO0_1 for entering ISP mode and thereby release pin PIO0_1 for other uses. This is called the NO_ISP mode. The NO_ISP mode can be entered by programming the pattern 0x4E69 7370 at location 0x0000 02FC.

20.7 ISP commands

The following commands are accepted by the ISP command handler. Detailed status codes are supported for each command. The command handler sends the return code INVALID_COMMAND when an undefined command is received. Commands and return codes are in ASCII format.

CMD_SUCCESS is sent by ISP command handler only when received ISP command has been completely executed and the new ISP command can be given by the host. Exceptions from this rule are "Set Baud Rate", "Write to RAM", "Read Memory", and "Go" commands.

Table 217. ISP command summary

ISP Command	Usage	Described in
Unlock	U <unlock code=""></unlock>	Table 218
Set Baud Rate	B <baud rate=""> <stop bit=""></stop></baud>	Table 219
Echo	A <setting></setting>	Table 220
Write to RAM	W <start address=""> <number bytes="" of=""></number></start>	Table 221
Read Memory	R <address> <number bytes="" of=""></number></address>	Table 222
Prepare sector(s) for write operation	P <start number="" sector=""> <end number="" sector=""></end></start>	<u>Table 223</u>
Copy RAM to flash	C <flash address=""> <ram address=""> <number bytes="" of=""></number></ram></flash>	Table 224
Go	G <address> <mode></mode></address>	Table 225
Erase sector(s)	E <start number="" sector=""> <end number="" sector=""></end></start>	Table 226
Blank check sector(s)	I <start number="" sector=""> <end number="" sector=""></end></start>	Table 227
Read Part ID	J	Table 228
Read Boot code version	K	Table 230
Compare	M <address1> <address2> <number bytes="" of=""></number></address2></address1>	Table 231
ReadUID	N	Table 232

20.7.1 Unlock < Unlock code>

Table 218. ISP Unlock command

Command	U
Input	Unlock code: 23130 ₁₀
Return Code	CMD_SUCCESS
	INVALID_CODE
	PARAM_ERROR
Description	This command is used to unlock Flash Write, Erase, and Go commands.
Example	"U 23130 <cr><lf>" unlocks the Flash Write/Erase & Go commands.</lf></cr>

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.7.2 Set Baud Rate < Baud Rate > < stop bit >

Table 219. ISP Set Baud Rate command

Command	В
Input	Baud Rate: 9600 19200 38400 57600 115200 230400
	Stop bit: 1 2
Return Code	CMD_SUCCESS
	INVALID_BAUD_RATE
	INVALID_STOP_BIT
	PARAM_ERROR
Description	This command is used to change the baud rate. The new baud rate is effective after the command handler sends the CMD_SUCCESS return code.
Example	"B 57600 1 <cr><lf>" sets the serial port to baud rate 57600 bps and 1 stop bit.</lf></cr>

20.7.3 Echo <setting>

Table 220. ISP Echo command

Command	A
Input	Setting: ON = 1 OFF = 0
Return Code	CMD_SUCCESS PARAM_ERROR
Description	The default setting for echo command is ON. When ON the ISP command handler sends the received serial data back to the host.
Example	"A 0 <cr><lf>" turns echo off.</lf></cr>

20.7.4 Write to RAM <start address> <# bytes>

The host should send the data only after receiving the CMD_SUCCESS return code. The host should send the check-sum after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less then 20 UU-encoded lines then the check-sum should be of the actual number of bytes sent. The ISP command handler compares it with the check-sum of the received bytes. If the check-sum matches, the ISP command handler responds with "OK<CR><LF>" to continue further transmission. If the check-sum does not match, the ISP command handler responds with "RESEND<CR><LF>". In response the host should retransmit the bytes.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 221. ISP Write to RAM command

Command	W
Input	Start Address: RAM address where data bytes are to be written. This address should be a word boundary.
	Number of Bytes: Number of bytes to be written. Count should be a multiple of 4
Return Code	CMD_SUCCESS
	ADDR_ERROR (Address not on word boundary)
	ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not multiple of 4)
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to download data to RAM. Data should be in UU-encoded format. This command is blocked when code read protection is enabled.
Example	"W 268436224 4 <cr><lf>" writes 4 bytes of data to address 0x1000 0300.</lf></cr>

20.7.5 Read Memory <address> <no. of bytes>

The data stream is followed by the command success return code. The check-sum is sent after transmitting 20 UU-encoded lines. The checksum is generated by adding raw data (before UU-encoding) bytes and is reset after transmitting 20 UU-encoded lines. The length of any UU-encoded line should not exceed 61 characters (bytes) i.e. it can hold 45 data bytes. When the data fits in less then 20 UU-encoded lines then the check-sum is of actual number of bytes sent. The host should compare it with the checksum of the received bytes. If the check-sum matches then the host should respond with "OK<CR><LF>" to continue further transmission. If the check-sum does not match then the host should respond with "RESEND<CR><LF>". In response the ISP command handler sends the data again.

Table 222. ISP Read Memory command

Table 222. 13F Read Memory Command	
Command	R
Input	Start Address: Address from where data bytes are to be read. This address should be a word boundary.
	Number of Bytes: Number of bytes to be read. Count should be a multiple of 4.
Return Code	CMD_SUCCESS followed by <actual (uu-encoded)="" data=""> </actual>
	ADDR_ERROR (Address not on word boundary)
	ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not a multiple of 4)
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to read data from RAM or flash memory. This command is blocked when code read protection is enabled.
Example	"R 268435456 4 <cr><lf>" reads 4 bytes of data from address 0x1000 0000.</lf></cr>

20.7.6 Prepare sector(s) for write operation <start sector number> <end sector number>

This command makes flash write/erase operation a two step process.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 223. ISP Prepare sector(s) for write operation command

Command	P
Input	Start Sector Number
	End Sector Number: Should be greater than or equal to start sector number.
Return Code	CMD_SUCCESS BUSY INVALID_SECTOR PARAM_ERROR
Description	This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot block can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.
Example	"P 0 0 <cr><lf>" prepares the flash sector 0.</lf></cr>

20.7.7 Copy RAM to flash <Flash address> <RAM address> <no of bytes>

Table 224. ISP Copy command

Command	С
Input	Flash Address (DST): Destination flash address where data bytes are to be written. The destination address should be a 256 byte boundary.
	RAM Address (SRC): Source RAM address from where data bytes are to be read.
	Number of Bytes: Number of bytes to be written. Should be 256 512 1024 4096.
Return Code	CMD_SUCCESS
	SRC_ADDR_ERROR (Address not on word boundary)
	DST_ADDR_ERROR (Address not on correct boundary)
	SRC_ADDR_NOT_MAPPED
	DST_ADDR_NOT_MAPPED
	COUNT_ERROR (Byte count is not 256 512 1024 4096)
	SECTOR_NOT_PREPARED_FOR WRITE_OPERATION
	BUSY
	CMD_LOCKED
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to program the flash memory. The "Prepare Sector(s) for Write Operation" command should precede this command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot block cannot be written by this command. This command is blocked when code read protection is enabled.
Example	"C 0 268467504 512 <cr><lf>" copies 512 bytes from the RAM address 0x1000 0800 to the flash address 0.</lf></cr>

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.7.8 Go <address> <mode>

Table 225. ISP Go command

Command	G
Input	Address: Flash or RAM address from which the code execution is to be started. This address should be on a word boundary.
	Mode: T (Execute program in Thumb Mode) A (not allowed).
Return Code	CMD_SUCCESS
	ADDR_ERROR
	ADDR_NOT_MAPPED
	CMD_LOCKED
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to execute a program residing in RAM or flash memory. It may not be possible to return to the ISP command handler once this command is successfully executed. This command is blocked when code read protection is enabled. The command must be used with an address of 0x0000 0200 or greater.
Example	"G 512 T <cr><lf>" branches to address 0x0000 0200 in Thumb mode.</lf></cr>

20.7.9 Erase sector(s) <start sector number> <end sector number>

Table 226. ISP Erase sector command

Command	E
Input	Start Sector Number
	End Sector Number: Should be greater than or equal to start sector number.
Return Code	CMD_SUCCESS
	BUSY
	INVALID_SECTOR
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	CMD_LOCKED
	PARAM_ERROR
	CODE_READ_PROTECTION_ENABLED
Description	This command is used to erase one or more sector(s) of on-chip flash memory. The boot block can not be erased using this command. This command only allows erasure of all user sectors when the code read protection is enabled.
Example	"E 2 3 <cr><lf>" erases the flash sectors 2 and 3.</lf></cr>

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.7.10 Blank check sector(s) < sector number > < end sector number >

Table 227. ISP Blank check sector command

Command	T T T T T T T T T T T T T T T T T T T
Input	Start Sector Number:
	End Sector Number: Should be greater than or equal to start sector number.
Return Code	CMD_SUCCESS
	SECTOR_NOT_BLANK (followed by <offset blank="" first="" location="" non="" of="" the="" word=""> <contents blank="" location="" non="" of="" word="">) </contents></offset>
	INVALID_SECTOR
	PARAM_ERROR
Description	This command is used to blank check one or more sectors of on-chip flash memory.
	Blank check on sector 0 always fails as first 64 bytes are re-mapped to flash boot block.
Example	"I 2 3 <cr><lf>" blank checks the flash sectors 2 and 3.</lf></cr>

20.7.11 Read Part Identification number

Table 228. ISP Read Part Identification command

Command	J
Input	None.
Return Code	CMD_SUCCESS followed by part identification number in ASCII (see <u>Table 229</u>).
Description	This command is used to read the part identification number.

Table 229. LPC11Axx part identification numbers

Device	Hex coding
LPC11A11FHN33/001	0x455E C02B
LPC11A12FBD48/101	0x4574 802B
LPC11A12FHN33/101	0x4574 802B
LPC11A13FHI33/201	0x458A 402B
LPC11A14FBD48/301	0x35A0 002B; 0x45A0 002B
LPC11A14FHN33/301	0x35A0 002B; 0x45A0 002B
LPC11A02UK	0x4D4C 802B
LPC11A04UK	0x4D80 002B

20.7.12 Read Boot code version number

Table 230. ISP Read Boot Code version command

Command	K
Input	None
Return Code	CMD_SUCCESS followed by 2 bytes of boot code version number in ASCII format. It is to be interpreted as yte1(Major)>. byte0(Minor)>.
Description	This command is used to read the boot code version number.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.7.13 Compare <address1> <address2> <# bytes>

Table 231. ISP Compare command

Command	M
Input	Address1 (DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.
	Address2 (SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.
	Number of Bytes: Number of bytes to be compared; should be a multiple of 4.
Return Code	CMD_SUCCESS (Source and destination data are equal)
	COMPARE_ERROR (Followed by the offset of first mismatch)
	COUNT_ERROR (Byte count is not a multiple of 4)
	ADDR_ERROR
	ADDR_NOT_MAPPED
	PARAM_ERROR
Description	This command is used to compare the memory contents at two locations.
	Compare result may not be correct when source or destination address contains any of the first 512 bytes starting from address zero. First 512 bytes are re-mapped to boot ROM
Example	"M 8192 268468224 4 <cr><lf>" compares 4 bytes from the RAM address 0x1000 8000 to the 4 bytes from the flash address 0x2000.</lf></cr>

20.7.14 ReadUID

Table 232. ReadUID command

Command	N
Input	None
Return Code	CMD_SUCCESS followed by four 32-bit words of E-sort test information in ASCII format. The word sent at the lowest address is sent first.
Description	This command is used to read the unique ID.

20.7.15 ISP Return Codes

Table 233. ISP Return Codes Summary

Return Code	Mnemonic	Description
0	CMD_SUCCESS	Command is executed successfully. Sent by ISP handler only when command given by the host has been completely and successfully executed.
1	INVALID_COMMAND	Invalid command.
2	SRC_ADDR_ERROR	Source address is not on word boundary.
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 233. ISP Return Codes Summary

Return Code	Mnemonic	Description
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.
7	INVALID_SECTOR	Sector number is invalid or end sector number is greater than start sector number.
8	SECTOR_NOT_BLANK	Sector is not blank.
9	SECTOR_NOT_PREPARED_FOR_ WRITE_OPERATION	Command to prepare sector for write operation was not executed.
10	COMPARE_ERROR	Source and destination data not equal.
11	BUSY	Flash programming hardware interface is busy.
12	PARAM_ERROR	Insufficient number of parameters or invalid parameter.
13	ADDR_ERROR	Address is not on word boundary.
14	ADDR_NOT_MAPPED	Address is not mapped in the memory map. Count value is taken in to consideration where applicable.
15	CMD_LOCKED	Command is locked.
16	INVALID_CODE	Unlock code is invalid.
17	INVALID_BAUD_RATE	Invalid baud rate setting.
18	INVALID_STOP_BIT	Invalid stop bit setting.
19	CODE_READ_PROTECTION_ ENABLED	Code read protection enabled.

20.8 IAP commands

For in application programming the IAP routine should be called with a word pointer in register r0 pointing to memory (RAM) containing command code and parameters. Result of the IAP command is returned in the result table pointed to by register r1. The user can reuse the command table for result by passing the same pointer in registers r0 and r1. The parameter table should be big enough to hold all the results in case if number of results are more than number of parameters. Parameter passing is illustrated in the Figure 60. The number of parameters and results vary according to the IAP command. The maximum number of parameters is 5, passed to the "Copy RAM to FLASH" command. The maximum number of results is 4, returned by the "ReadUID" command. The command handler sends the status code INVALID_COMMAND when an undefined command is received. The IAP routine resides at 0x1FFF 1FF0 location and it is thumb code.

The IAP function could be called in the following way using C.

Define the IAP location entry point. Since the 0th bit of the IAP location is set there will be a change to Thumb instruction set when the program counter branches to this address.

#define IAP_LOCATION 0x1fff1ff1

Define data structure or pointers to pass IAP command table and result table to the IAP function:

unsigned long command[5];

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

```
unsigned long result[4];

or

unsigned long * command;
unsigned long * result;
command=(unsigned long *) 0x...
result= (unsigned long *) 0x...
```

Define pointer to function type, which takes two parameters and returns void. Note the IAP returns the result with the base address of the table residing in R1.

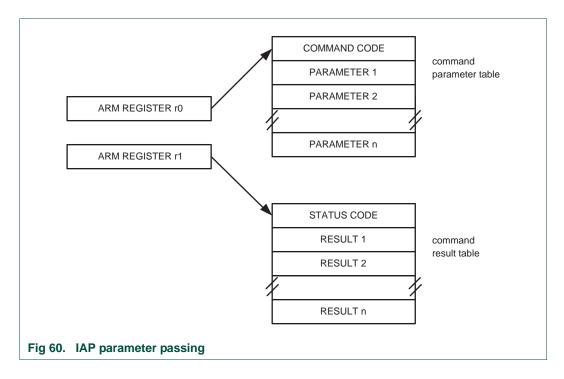
```
typedef void (*IAP)(unsigned int [],unsigned int[]);
IAP iap_entry;
```

Setting function pointer:

```
iap_entry=(IAP) IAP_LOCATION;
```

Whenever you wish to call IAP you could use the following statement.

```
iap_entry (command, result);
```


As per the ARM specification (The ARM Thumb Procedure Call Standard SWS ESPC 0002 A-05) up to 4 parameters can be passed in the r0, r1, r2 and r3 registers respectively. Additional parameters are passed on the stack. Up to 4 parameters can be returned in the r0, r1, r2 and r3 registers respectively. Additional parameters are returned indirectly via memory. Some of the IAP calls require more than 4 parameters. If the ARM suggested scheme is used for the parameter passing/returning then it might create problems due to difference in the C compiler implementation from different vendors. The suggested parameter passing scheme reduces such risk.

The flash memory is not accessible during a write or erase operation. IAP commands, which results in a flash write/erase operation, use 32 bytes of space in the top portion of the on-chip RAM for execution. The user program should not be use this space if IAP flash programming is permitted in the application.

Table 234. IAP Command Summary

IAP Command	Command Code	Described in
Prepare sector(s) for write operation	50 ₁₀	Table 235
Copy RAM to flash	51 ₁₀	Table 236
Erase sector(s)	52 ₁₀	Table 237
Blank check sector(s)	53 ₁₀	Table 238
Read Part ID	54 ₁₀	Table 239
Read Boot code version	55 ₁₀	Table 240
Compare	56 ₁₀	Table 241
Reinvoke ISP	57 ₁₀	Table 242
Read UID	58 ₁₀	Table 243
EEPROM Write	61 ₁₀	Table 244
EEPROM Read	62 ₁₀	Table 245

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.8.1 Prepare sector(s) for write operation

This command makes flash write/erase operation a two step process.

Table 235. IAP Prepare sector(s) for write operation command

Prepare sector(s) for write operation	
Command code: 50 ₁₀	
Param0: Start Sector Number	
Param1: End Sector Number (should be greater than or equal to start sector number).	
CMD_SUCCESS	
BUSY	
INVALID_SECTOR	
None	
This command must be executed before executing "Copy RAM to flash" or "Erase Sector(s)" command. Successful execution of the "Copy RAM to flash" or "Erase Sector(s)" command causes relevant sectors to be protected again. The boot sector can not be prepared by this command. To prepare a single sector use the same "Start" and "End" sector numbers.	

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.8.2 Copy RAM to flash

Table 236. IAP Copy RAM to flash command

Command	Copy RAM to flash	
Input	Command code: 51 ₁₀	
	Param0(DST): Destination flash address where data bytes are to be written. This address should be a 256 byte boundary.	
	Param1(SRC): Source RAM address from which data bytes are to be read. This address should be a word boundary.	
	Param2: Number of bytes to be written. Should be 256 512 1024 4096.	
	Param3: System Clock Frequency (CCLK) in kHz.	
Return Code	CMD_SUCCESS	
	SRC_ADDR_ERROR (Address not a word boundary)	
	DST_ADDR_ERROR (Address not on correct boundary)	
	SRC_ADDR_NOT_MAPPED	
	DST_ADDR_NOT_MAPPED	
	COUNT_ERROR (Byte count is not 256 512 1024 4096)	
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION	
	BUSY	
Result	None	
Description	This command is used to program the flash memory. The affected sectors should be prepared first by calling "Prepare Sector for Write Operation" command. The affected sectors are automatically protected again once the copy command is successfully executed. The boot sector can not be written by this command.	

20.8.3 Erase Sector(s)

Table 237. IAP Erase Sector(s) command

Command	Erase Sector(s)
Input	Command code: 52 ₁₀
	Param0: Start Sector Number
	Param1: End Sector Number (should be greater than or equal to start sector number).
	Param2: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS
	BUSY
	SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION
	INVALID_SECTOR
Result	None
Description	This command is used to erase a sector or multiple sectors of on-chip flash memory. The boot sector can not be erased by this command. To erase a single sector use the same "Start" and "End" sector numbers.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.8.4 Blank check sector(s)

Table 238. IAP Blank check sector(s) command

Command	Blank check sector(s)
Input	Command code: 53 ₁₀
	Param0: Start Sector Number
	Param1: End Sector Number (should be greater than or equal to start sector number).
Return Code	CMD_SUCCESS
	BUSY
	SECTOR_NOT_BLANK
	INVALID_SECTOR
Result	Result0: Offset of the first non blank word location if the Status Code is SECTOR_NOT_BLANK.
	Result1: Contents of non blank word location.
Description	This command is used to blank check a sector or multiple sectors of on-chip flash memory. To blank check a single sector use the same "Start" and "End" sector numbers.

20.8.5 Read Part Identification number

Table 239. IAP Read Part Identification command

Command	Read part identification number
Input	Command code: 54 ₁₀
	Parameters: None
Return Code	CMD_SUCCESS
Result	Result0: Part Identification Number.
Description	This command is used to read the part identification number.

20.8.6 Read Boot code version number

Table 240. IAP Read Boot Code version command

Command	Read boot code version number
Input	Command code: 55 ₁₀
	Parameters: None
Return Code	CMD_SUCCESS
Result	Result0: 2 bytes of boot code version number in ASCII format. It is to be interpreted as hyte1(Major)>. byte0(Minor)>
Description	This command is used to read the boot code version number.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.8.7 Compare <address1> <address2> <# bytes>

Table 241. IAP Compare command

Command	Compare				
Input	Command code: 56 ₁₀				
	Param0(DST): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.				
	Param1(SRC): Starting flash or RAM address of data bytes to be compared. This address should be a word boundary.				
	Param2: Number of bytes to be compared; should be a multiple of 4.				
Return Code	CMD_SUCCESS				
	COMPARE_ERROR				
	COUNT_ERROR (Byte count is not a multiple of 4)				
	ADDR_ERROR				
	ADDR_NOT_MAPPED				
Result	Result0: Offset of the first mismatch if the Status Code is COMPARE_ERROR.				
Description	This command is used to compare the memory contents at two locations.				
	The result may not be correct when the source or destination includes any of the first 512 bytes starting from address zero. The first 512 bytes can be re-mapped to RAM.				

20.8.8 Reinvoke ISP

Table 242. Reinvoke ISP

Command	Compare
Input	Command code: 57 ₁₀
Return Code	None
Result	None.
Description	This command is used to invoke the boot loader in ISP mode. It maps boot vectors, sets PCLK = CCLK, configures UART pins RXD and TXD, resets counter/timer CT32B1 and resets the FDR (see <u>Table 107</u>). This command may be used when a valid user program is present in the internal flash memory and the PIOO_1 pin is not accessible to force the ISP mode.

20.8.9 Read UID

Table 243. IAP Read UID command

Command	Compare
Input	Command code: 58 ₁₀
Return Code	CMD_SUCCESS
Result	Result0: The first 32-bit word (at the lowest address). Result1: The second 32-bit word. Result2: The third 32-bit word. Result3: The fourth 32-bit word.
Description	This command is used to read the unique ID.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

20.8.10 Write EEPROM

Table 244. IAP Write EEPROM command

Command	Compare				
Input	Command code: 61 ₁₀ Param0: EEPROM address. Param1: RAM address. Param2: Number of bytes to be written. Param3: System Clock Frequency (CCLK) in kHz				
Return Code	CMD_SUCCESS SRC_ADDR_NOT_MAPPED DST_ADDR_NOT_MAPPED				
Result	None				
Description	Data is copied from the RAM address to the EEPROM address.				
	Remark: The top 64 bytes of the 4 kB EEPROM memory are reserved and cannot be written to. The entire EEPROM is writable for smaller EEPROM sizes.				

20.8.11 Read EEPROM

Table 245. IAP Read EEPROM command

	11044 == 110111 00111114114
Command	Compare
Input	Command code: 62 ₁₀ Param0: EEPROM address. Param1: RAM address. Param2: Number of bytes to be read. Param3: System Clock Frequency (CCLK) in kHz.
Return Code	CMD_SUCCESS SRC_ADDR_NOT_MAPPED DST_ADDR_NOT_MAPPED
Result	None
Description	Data is copied from the EEPROM address to the RAM address.

20.8.12 IAP Status Codes

Table 246. IAP Status Codes Summary

Status Code	Mnemonic	Description
0	CMD_SUCCESS	Command is executed successfully.
1	INVALID_COMMAND	Invalid command.
2	SRC_ADDR_ERROR	Source address is not on a word boundary.
3	DST_ADDR_ERROR	Destination address is not on a correct boundary.
4	SRC_ADDR_NOT_MAPPED	Source address is not mapped in the memory map. Count value is taken in to consideration where applicable.
5	DST_ADDR_NOT_MAPPED	Destination address is not mapped in the memory map. Count value is taken in to consideration where applicable.
6	COUNT_ERROR	Byte count is not multiple of 4 or is not a permitted value.
7	INVALID_SECTOR	Sector number is invalid.
8	SECTOR_NOT_BLANK	Sector is not blank.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 246. IAP Status Codes Summary

Status Code	Mnemonic	Description
9	SECTOR_NOT_PREPARED_ FOR_WRITE_OPERATION	Command to prepare sector for write operation was not executed.
10	COMPARE_ERROR	Source and destination data is not same.
11	BUSY	Flash programming hardware interface is busy.

20.9 Debug notes

20.9.1 Comparing flash images

Depending on the debugger used and the IDE debug settings, the memory that is visible when the debugger connects might be the boot ROM, the internal SRAM, or the flash. To help determine which memory is present in the current debug environment, check the value contained at flash address 0x0000 0004. This address contains the entry point to the code in the ARM Cortex-M0 vector table, which is the bottom of the boot ROM, the internal SRAM, or the flash memory respectively.

Table 247. Memory mapping in debug mode

Memory mapping mode	Memory start address visible at 0x0000 0004
Boot loader mode	0x1FFF 0000
User flash mode	0x0000 0000
User SRAM mode	0x1000 0000

20.9.2 Serial Wire Debug (SWD) flash programming interface

Debug tools can write parts of the flash image to RAM and then execute the IAP call "Copy RAM to flash" repeatedly with proper offset.

20.10 Flash controller registers

Table 248. Register overview: FMC (base address 0x4003 C000)

Name	Access	Address offset	Description	Reset value	Reference
FLASHCFG	R/W	0x010	Flash memory access time configuration register	-	Table 249
FMSSTART	R/W	0x020	Signature start address register	0	Table 250
FMSSTOP	R/W	0x024	Signature stop-address register	0	Table 251
FMSW0	R	0x02C	Word 0 [31:0]	-	Table 252
FMSW1	R	0x030	Word 1 [63:32]	-	Table 253
FMSW2	R	0x034	Word 2 [95:64]	-	Table 254
FMSW3	R	0x038	Word 3 [127:96]	-	Table 255
EEMSSTART	R/W	0x9C	EEPROM BIST start address register	0x0	Table 256
EEMSSTOP	R/W	0xA0	EEPROM BIST stop address register	0x0	Table 257

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 248. Register overview: FMC (base address 0x4003 C000) ... continued

Name	Access	Address offset	Description	Reset value	Reference
EEMSSIG	R	0xA4	EEPROM 24-bit BIST signature register	0x0	Table 258
FMSTAT	R	0xFE0	Signature generation status register	0	Table 259
FMSTATCLR	W	0xFE8	Signature generation status clear register	-	Table 260

20.10.1 Flash memory access register

Depending on the system clock frequency, access to the flash memory can be configured with various access times by writing to the FLASHCFG register.

Remark: Improper setting of this register may result in incorrect operation of the flash memory.

Table 249. Flash configuration register (FLASHCFG, address 0x4003 C010) bit description

Bit	Symbol	Value	Description	Reset value
1:0	FLASHTIM		Flash memory access time. FLASHTIM +1 is equal to the number of system clocks used for flash access.	0x2
		0x1	1 system clock flash access time (for system clock frequencies of up to 20 MHz).	
		0x2	2 system clocks flash access time (for system clock frequencies of up to 40 MHz).	
		0x3	3 system clocks flash access time (for system clock frequencies of up to 50 MHz).	
		0x4	Reserved.	
31:2	-	-	Reserved. User software must not change the value of these bits. Bits 31:2 must be written back exactly as read.	-

20.10.2 Flash signature generation

The flash module contains a built-in signature generator. This generator can produce a 128-bit signature from a range of flash memory. A typical usage is to verify the flashed contents against a calculated signature (e.g. during programming).

The address range for generating a signature must be aligned on flash-word boundaries, i.e. 128-bit boundaries. Once started, signature generation completes independently. While signature generation is in progress, the flash memory cannot be accessed for other purposes, and an attempted read will cause a wait state to be asserted until signature generation is complete. Code outside of the flash (e.g. internal RAM) can be executed during signature generation. This can include interrupt services, if the interrupt vector table is re-mapped to memory other than the flash memory. The code that initiates signature generation should also be placed outside of the flash memory.

20.10.3 Signature generation address and control registers

These registers control automatic signature generation. A signature can be generated for any part of the flash memory contents. The address range to be used for generation is defined by writing the start address to the signature start address register (FMSSTART)

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

and the stop address to the signature stop address register (FMSSTOP). The start and stop addresses must be aligned to 128-bit boundaries and can be derived by dividing the byte address by 16.

Signature generation is started by setting the SIG_START bit in the FMSSTOP register. Setting the SIG_START bit is typically combined with the signature stop address in a single write.

<u>Table 250</u> and <u>Table 251</u> show the bit assignments in the FMSSTART and FMSSTOP registers respectively.

Table 250. Flash module signature start register (FMSSTART - 0x4003 C020) bit description

		,	•
Bit	Symbol	Description	Reset value
16:0	START	Signature generation start address (corresponds to AHB byte address bits[20:4]).	0
31:17	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 251. Flash module signature stop register (FMSSTOP - 0x4003 C024) bit description

Bit	Symbol	Value	Description	Reset value
16:0	STOP		BIST stop address divided by 16 (corresponds to AHB byte address [20:4]).	0
17	SIG_START		Start control bit for signature generation.	0
		0	Signature generation is stopped	
		1	Initiate signature generation	
31:18	-		Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

20.10.4 Signature generation result registers

The signature generation result registers return the flash signature produced by the embedded signature generator. The 128-bit signature is reflected by the four registers FMSW0, FMSW1, FMSW2 and FMSW3.

The generated flash signature can be used to verify the flash memory contents. The generated signature can be compared with an expected signature and thus makes saves time and code space. The method for generating the signature is described in Section 20.10.10.

<u>Table 255</u> show bit assignment of the FMSW0 and FMSW1, FMSW2, FMSW3 registers respectively.

Table 252. FMSW0 register (FMSW0, address: 0x4003 C02C) bit description

Bit	Symbol	Description	Reset value
31:0	SW0[31:0]	Word 0 of 128-bit signature (bits 31 to 0).	-

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 253. FMSW1 register (FMSW1, address: 0x4003 C030) bit description

Bit	Symbol	Description	Reset value
31:0	SW1[63:32]	Word 1 of 128-bit signature (bits 63 to 32).	-

Table 254. FMSW2 register (FMSW2, address: 0x4003 C034) bit description

Bit	Symbol	Description	Reset value
31:0	SW2[95:64]	Word 2 of 128-bit signature (bits 95 to 64).	-

Table 255. FMSW3 register (FMSW3, address: 0x4003 40C8) bit description

Bit	Symbol	Description	Reset value
31:0	SW3[127:96]	Word 3 of 128-bit signature (bits 127 to 96).	-

20.10.5 EEPROM BIST start address register

The EEPROM BIST start address register is used to program the start address for the BIST. During BIST the EEPROM devices are accessed with 16-bit read operations so the LSB of the address is fixed zero.

Table 256. EEPROM BIST start address register (EEMSSTART - address 0x4003 C09C) bit description

Bit	Symbol	Description	Reset value	Access
13:0	STARTA	BIST start address: Bit 0 is fixed zero since only even addresses are allowed.	0x0	R/W
31:14	-	Reserved	0x0	-

20.10.6 EEPROM BIST stop address register

The EEPROM BIST stop address register is used to program the stop address for the BIST and also to start the BIST. During BIST the EEPROM devices are accessed with 16-bit read operations so the LSB of the address is fixed zero.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 257. EEPROM BIST stop address register (EEMSSTOP - address 0x4003 C0A0) bit description

	<u> </u>			
Bit	Symbol	Description	Reset value	Access
13:0	STOPA	BIST stop address:	0x0	R/W
		Bit 0 is fixed zero since only even addresses are allowed.		
29:14	-	Reserved	0x0	-
30	DEVSEL	BIST device select bit	0x0	R/W
		0: the BIST signature is generated over the total memory space. Singe pages are interleaved over the EEPROM devices when multiple devices are used, the signature is generated over memory of multiple devices.		
		1: the BIST signature is generated only over a memory range located on a single EEPROM device. Therefore the internal address generation is done such that the address' CS bits are kept stable to select only the same device. The address' MSB and LSB bits are used to step through the memory range specified by the start and stop address fields.		
		Note: if this bit is set the start and stop address fields must be programmed such that they both address the same EEPROM device. Therefore the address' CS bits in both the start and stop address must be the same.		
31	STRTBIST	BIST start bit	0x0	R/W
		Setting this bit will start the BIST. This bit is self-clearing.		

20.10.7 EEPROM signature register

The EEPROM BIST signature register returns the signatures as produced by the embedded signature generators.

Table 258. EEPROM BIST signature register (EEMSSIG - address 0x4003 C0A4) bit description

Bits	Field name	Description	Reset value	Access
15:0	DATA_SIG	BIST 16-bit signature calculated from only the data bytes	0x0	R
31:16	PARITY_SIG	BIST 16-bit signature calculated from only the parity bits of the data bytes	0x0	R

20.10.8 Flash module status register

The read-only FMSTAT register provides a means of determining when signature generation has completed. Completion of signature generation can be checked by polling the SIG_DONE bit in FMSTAT register. SIG_DONE should be cleared via the FMSTATCLR register before starting a signature generation operation, otherwise the status might indicate completion of a previous operation.

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

Table 259. Flash module status register (FMSTAT - 0x4003 CFE0) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	SIG_DONE	When 1, a previously started signature generation has completed. See FMSTATCLR register description for clearing this flag.	0
31:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

20.10.9 Flash module status clear register

The FMSTATCLR register is used to clear the signature generation completion flag.

Table 260. Flash module status clear register (FMSTATCLR - 0x0x4003 CFE8) bit description

Bit	Symbol	Description	Reset value
1:0	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA
2	SIG_DONE_CLR	Writing a 1 to this bits clears the signature generation completion flag (SIG_DONE) in the FMSTAT register.	0
31:3	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

20.10.10 Algorithm and procedure for signature generation

Signature generation

A signature can be generated for any part of the flash contents. The address range to be used for signature generation is defined by writing the start address to the FMSSTART register, and the stop address to the FMSSTOP register.

The signature generation is started by writing a '1' to the SIG_START bit in the FMSSTOP register. Starting the signature generation is typically combined with defining the stop address, which is done in the STOP bits of the same register.

The time that the signature generation takes is proportional to the address range for which the signature is generated. Reading of the flash memory for signature generation uses a self-timed read mechanism and does not depend on any configurable timing settings for the flash. A safe estimation for the duration of the signature generation is:

Duration = int((60 / tcy) + 3) x (FMSSTOP - FMSSTART + 1)

When signature generation is triggered via software, the duration is in AHB clock cycles, and tcy is the time in ns for one AHB clock. The SIG_DONE bit in FMSTAT can be polled by software to determine when signature generation is complete.

After signature generation, a 128-bit signature can be read from the FMSW0 to FMSW3 registers. The 128-bit signature reflects the corrected data read from the flash. The 128-bit signature reflects flash parity bits and check bit values.

Content verification

Chapter 20: LPC11Axx Flash/EEPROM programming firmware

The signature as it is read from the FMSW0 to FMSW3 registers must be equal to the reference signature. The algorithms to derive the reference signature is given in Figure 61.

```
int128 signature = 0
int128 nextSignature
FOR address = flashpage 0 TO address = flashpage max
{
      FOR i = 0 TO 126 {
             nextSignature[i] = flashword[i] XOR signature[i+1]}
      nextSignature[127] = flashword[127] XOR signature[0] XOR signature[2]
             XOR signature[27] XOR signature[29]
      signature = nextSignature
}
return signature
```

Fig 61. Algorithm for generating a 128-bit signature

UM10527

Chapter 21: LPC11Axx Integer division routines

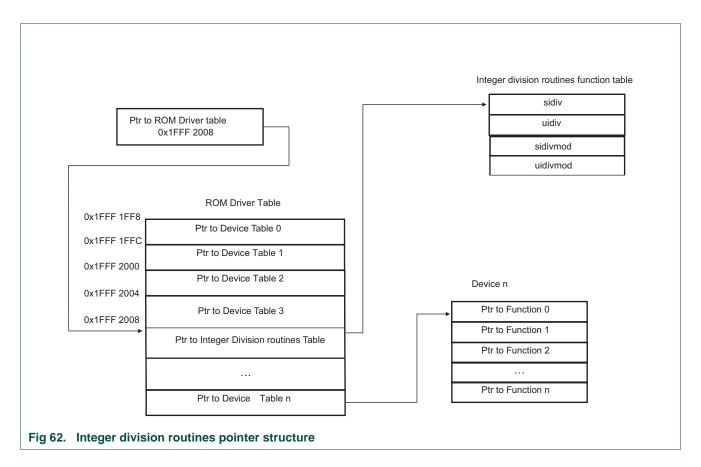
Rev. 5 — 21 January 2013

User manual

21.1 How to read this chapter

The integer division routines are available on all LPC11Axx parts.

21.2 Features


- Performance-optimized signed/unsigned integer division.
- Performance-optimized signed/unsigned integer division with remainder.
- ROM-based routines to reduce code size.
- Support for integers up to 32 bit.
- ROM calls can easily be added to EABI-compliant functions to overload "/" and "%" operators in C.

21.3 General description

The integer division routines perform arithmetic integer division operations and can be called in the application code through simple API calls.

The following function prototypes are used:

Chapter 21: LPC11Axx Integer division routines

21.4 API description

21.4.1 Examples

21.4.1.1 Initialization

The example C-code listing below shows how to initialize the API's ROM table pointer.

```
typedef struct _ROM {
    const unsigned p_dev1;
    const unsigned p_dev2;
    const unsigned p_dev3;
    const PWRD *pPWRD;
    const LPC_ROM_DIV_STUCT * pROMDiv;
    const unsigned p_dev4;
    const unsigned p_dev5;
    const unsigned p_dev6;
ROM ** rom = (ROM **) 0x1FFF1FF8;
    pDivROM = (*rom)->pROMDiv;
} ROM;
```

Chapter 21: LPC11Axx Integer division routines

21.4.1.2 Signed division

The example C-code listing below shows how to perform a signed integer division via the ROM API.

```
/* Divide (-99) by (+6) */
int32_t result;
result = pDivROM->sidiv(-99, 6);
/* result now contains (-16) */
```

21.4.1.3 Unsigned division with remainder

The example C-code listing below shows how to perform an unsigned integer division with remainder via the ROM API.

```
/* Modulus Divide (+99) by (+4) */
uidiv_return result;
result = pDivROM-> uidivmod (+99, 4);
/* result.quot contains (+24) */
/* result.rem contains (+3) */
```

UM10527

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Rev. 5 — 21 January 2013

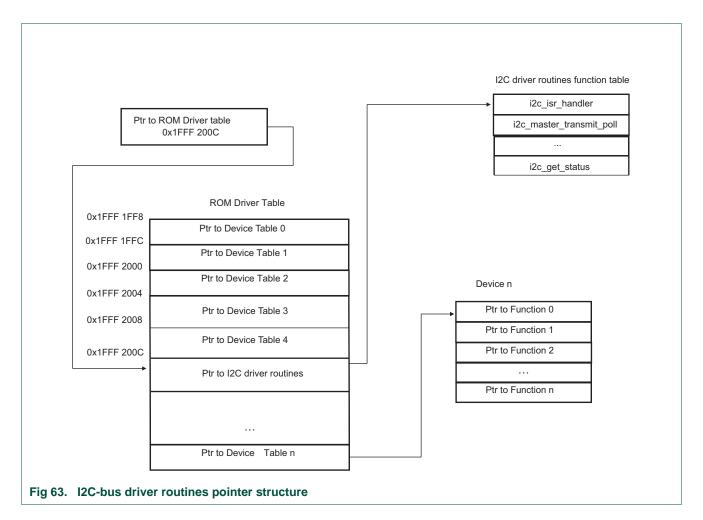
User manual

22.1 How to read this chapter

The I2C-bus ROM driver routines are available on all LPC11Axx parts.

22.2 Features

- Simple I2C drivers to send and receive data on the I2C-bus.
- Polled and interrupt-driven receive and transmit functions for master and slave modes.


22.3 General description

The drivers are callable for use by any application program to send or receive data on the I2C bus. The purpose of these drivers is to make it quick and easy for the application programmer to produce working projects using the I2C interface.

The ROM routines allow user to operate the I2C interface as a Master or a Slave. The software routines do not implement arbitration to make a Master switch to a Slave mode in the midst of a transmission.

Although multi-master arbitration is not implemented in these I2C drivers, it is possible to use them in a system design with more than one master. If the flag returned from the driver indicates that the message was not successful due to loss of arbitration, the application just resends the message.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

22.4 API description

Table 261. ISR handler

Routine	ISR handler
Prototype	void i2c_isr_handler(I2C_HANDLE_T*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
Return	None.
Description	I2C ROM Driver interrupt service routine. This function must be called from the I2C ISR when using I2C Rom Driver interrupt mode.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Table 262. I2C Master Transmit Polling

Routine	I2C Master Transmit Polling
Prototype	ErrorCode_t i2c_master_transmit_poll(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Transmits bytes in the send buffer to a slave. The slave address with the R/W bit =0 is expected in the first byte of the send buffer. STOP condition is sent at end unless stop_flag =0. When the task is completed, the function returns to the line after the call.

Table 263. I2C Master Receive Polling

Routine	I2C Master Receive Polling
Prototype	ErrorCode_t i2c_master_receive_poll(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Receives bytes from slave and put into receive buffer. The slave address with the R/W bit =0 is expected in the first byte of the send buffer. After the task is finished, the slave address with the R/W bit =1 is in the first byte of the receive buffer. STOP condition is sent at end unless stop_flag =0. When the task is completed, the function returns to the line after the call.

Table 264. I2C Master Transmit and Receive Polling

Routine	I2C Master Transmit and Receive Polling
Prototype	ErrorCode_t i2c_master_tx_rx_poll(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	First, transmit bytes in the send buffer to a slave and secondly, receives bytes from slave and store it in the receive buffer. The slave address with the R/W bit =0 is expected in the first byte of the send buffer. After the task is finished, the slave address with the R/W bit =1 is in the first byte of the receive buffer. STOP condition is sent at end unless stop_flag =0. When the task is completed, the function returns to the line after the call.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Table 265. I2C Master Transmit Interrupt

Routine	I2C Master Transmit Interrupt
Prototype	ErrorCode_t i2c_master_transmit_intr(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Transmits bytes in the send buffer to a slave. The slave address with the R/W bit =0 is expected in the first byte of the send buffer. STOP condition is sent at end unless stop_flag =0. Program control will be returned immediately and task will be completed on an interrupt-driven basis. When task is completed, the callback function is called.

Table 266. I2C Master Receive Interrupt

Routine	I2C Master Receive Interrupt
Prototype	ErrorCode_t i2c_master_receive_intr(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Receives bytes from slave and put into receive buffer. After the task is finished, the slave address with the R/W bit =1 is in the first byte of the receive buffer. STOP condition is sent at end unless stop_flag =0. Program control will be returned immediately and task will be completed on an interrupt-driven basis. When task is completed, the callback function is called.

Table 267. I2C Master Transmit Receive Interrupt

Routine	I2C Master Transmit Receive Interrupt
Prototype	ErrorCode_t i2c_master_tx_rx_intr(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	First, transmits bytes in the send buffer to a slave and secondly, receives bytes from slave and store it in the receive buffer. The slave address with the R/W bit =0 is expected in the first byte of the send buffer. After the task is finished, the slave address with the R/W bit =1 is in the first byte of the receive buffer. STOP condition is sent at end unless stop_flag =0. Program control will be returned immediately and task will be completed on an interrupt-driven basis. When task is completed, the callback function is called.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Table 268. I2C Slave Receive Polling

Routine	I2C Slave Receive Polling
Prototype	ErrorCode_t i2c_slave_receive_poll(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area. I2C_PARAM - Pointer to the I2C PARAM struct. I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Receives data from master. When the task is completed, the function returns to the line after the call.

Table 269. I2C Slave Transmit Polling

Routine	I2C Slave Transmit Polling
Prototype	ErrorCode_t i2c_slave_transmit_poll(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Sends data bytes back to master. When the task is completed, the function returns to the line after the call.

Table 270. I2C Slave Receive Interrupt

Routine	I2C Slave Receive Interrupt
Prototype	ErrorCode_t i2c_slave_receive_intr(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	I2C_PARAM - Pointer to the I2C PARAM struct.
	I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Receives data from master. Program control will be returned immediately and task will be completed on an interrupt-driven basis. When task is completed, the callback function is called.

Table 271. I2C Slave Transmit Interrupt

Routine	I2C Slave Transmit Interrupt
Prototype	ErrorCode_t i2c_slave_transmit_intr(I2C_HANDLE_T* , I2C_PARAM* , I2C_RESULT*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area. I2C_PARAM - Pointer to the I2C PARAM struct. I2C_RESULT - Pointer to the I2C RESULT struct.
Return	ErrorCode.
Description	Sends data to the Master. Program control will be returned immediately and task will be completed on an interrupt-driven basis. When task is completed, the callback function is called.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Table 272. I2C Set Slave Address

Routine	I2C Set Slave Address
Prototype	ErrorCode_t i2c_set_slave_addr(I2C_HANDLE_T*, slave_addr_0_3, slave_mask_0_3)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	Slave_addr_0_3 - unint32 variable. 7-bit slave address.
	Slave_mask_0_3 - unint32 variable. Slave address mask.
Return	ErrorCode.
Description	Sets the slave address and associated mask. The set_slave_addr() function supports four 7-bit slave addresses and masks.

Table 273. I2C Get Memory Size

Routine	I2C Get Memory Size
Prototype	uint32_t i2c_get_mem_size(void)
Input parameter	None.
Return	uint32.
Description	Returns the number of bytes in SRAM needed by the I2C driver.

Table 274. I2C Setup

Routine	I2C Setup
Prototype	I2C_HANDLE_T* i2c_setup(i2c_base_addr, *start_of_ram)
Input parameter	I2C_base addr - unint32 variable. Base address for I2C peripherals. Start_of_ram - unint32 pointer. Pointer to allocated SRAM.
Return	I2C_Handle.
Description	Returns a handle to the allocated SRAM area.

Table 275. I2C Set Bit Rate

Routine	I2C Set Bit Rate
Prototype	ErrorCode_t i2c_set_bitrate(I2C_HANDLE_T*, P_clk_in_hz, bitrate_in_bps)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
	P_clk_in_hz - unint32 variable. The Peripheral Clock in Hz.
	Bitrate_in_bps - unint32 variable. Requested I2C operating frequency in Hz.
Return	ErrorCode.
Description	Configures the I2C duty-cycle registers (SCLH and SCLL).

Table 276. I2C Get Firmware Version

Routine	I2C Get Firmware Version
Prototype	uint32_t i2c_get_firmware_version(void)
Input parameter	None.
Return	I2C ROM Driver version number.
Description	Returns the version number. The firmware version is an unsigned 32-bit number.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

Table 277. I2C Get Status

Routine	I2C Get Status
Prototype	I2C_MODE_T i2c_get_status(I2C_HANDLE_T*)
Input parameter	I2C_HANDLE_T - Handle to the allocated SRAM area.
Return	Status code.
Description	Returns status code. The status code indicates the state of the I2C bus. Refer to I2C Status Code Table.

Table 278. Error codes

Error Code	Description	Comment
0	Successful completion	Function was completed successfully.
1	General error	-
0x0006 0001	ERR_I2C_NAK	Correspond to I2C status code 0x20, 0x30, 0x48, 0x88, 0x98 in the I2C Status register[1].
0x0006 0002	ERR_I2C_BUFFER_OVERFLOW	Receive buffer overflow.
0x0006 0003	ERR_I2C_BYTE_COUNT_ERR	Correspond to I2C status code 0xC0, 0xA0, 0xA8, 0xB8 in the I2C Status register [1].
0x0006 0004	ERR_I2C_LOSS_OF_ARBRITRATION	Correspond to I2C status code 0x38, 0x68, 0x78 in the I2C Status register[1].
0x0006 0005	ERR_I2C_SLAVE_NOT_ADDRESSED	Correspond to I2C status code 0xC8 in the I2C Status register[1].
0x0006 0006	ERR_I2C_LOSS_OF_ARBRITRATION_NAK_BIT	Correspond to I2C status code 0x38 in the I2C Status register [1].
0x0006 0007	ERR_I2C_GENERAL_FAILURE	Failure detected on I2C bus.
0x0006 0008	ERR_I2C_REGS_SET_TO_DEFAULT	I2C clock frequency could not be set. Default value of 0x04 is loaded into SCLH and SCLL.

^[1] Error code corresponds to I2C status register in <u>Table 134</u>, <u>Table 135</u>, <u>Table 138</u>, <u>Table 139</u>.

Table 279. I2C Status code

Status code	Description
0	IDLE
1	MASTER_SEND
2	MASTER_RECEIVE
3	SLAVE_SEND
4	SLAVE_RECEIVE

22.4.1 I2C ROM driver variables

The I2C ROM driver requires specific variables to be declared and initialized for proper usage. Depending on the operating mode, some variables can be omitted.

22.4.1.1 I2C Handle

The I2C handle is a pointer allocated for the I2C ROM driver. The handle needs to be defined as an I2C handle TYPE:

Chapter 22: LPC11Axx I2C-bus ROM driver routines

```
typedef void* I2C_HANDLE_T
```

After the definition of the handle, the handle must be initialized with I2C base address and RAM reserved for the I2C ROM driver by making a call to the i2c_setup() function.

The callback function type must be defined if interrupts for the I2C ROM driver are used:

```
typedef void (*I2C_CALLBK_T) (uint32_t err_code, uint32_t n)
```

The callback function will be called by the I2C ROM driver upon completion of a task when interrupts are used.

22.4.2 PARAM and RESULT structure

The I2C ROM driver input parameters consist of two structures, a PARAM structure and a RESULT structure. The PARAM structure contains the parameters passed to the I2C ROM driver and the RESULT structure contains the results after the I2C ROM driver is called.

The PARAM structure is as follows:

```
typedef struct i2c_A { //parameters passed to ROM function
uint32_t num_bytes_send;
uint32_t num_bytes_rec;
uint8_t *buffer_ptr_send;
uint8_t *buffer_ptr_rec;

I2C_CALLBK_T func_pt; // callback function pointer
uint8_t stop_flag;
uint8_t dummy[3]; // required for word alignment
} I2C_PARAM;

The RESULT structure is as follows:

typedef struct i2c_R { // RESULTs struct--results are here when returned
uint32_t n_bytes_sent;
uint32_t n_bytes_recd;
} I2C_RESULT;
```

22.4.3 Error structure

The error code returned by the I2C ROM driver is an enum structure. The Error structure is as follows:

```
typedef enum
```

Chapter 22: LPC11Axx I2C-bus ROM driver routines

```
LPC_OK=0, /**< enum value returned on Success */
ERROR,

ERR_I2C_BASE = 0x00060000,

/*0x00060001*/ ERR_I2C_NAK=ERR_I2C_BASE+1,

/*0x00060002*/ ERR_I2C_BUFFER_OVERFLOW,

/*0x00060003*/ ERR_I2C_BYTE_COUNT_ERR,

/*0x00060004*/ ERR_I2C_LOSS_OF_ARBRITRATION,

/*0x00060005*/ ERR_I2C_SLAVE_NOT_ADDRESSED,

/*0x00060006*/ ERR_I2C_LOSS_OF_ARBRITRATION_NAK_BIT,

/*0x00060007*/ ERR_I2C_GENERAL_FAILURE,

/*0x00060008*/ ERR_I2C_REGS_SET_TO_DEFAULT

} ErrorCode_t;
```

22.4.4 I2C Mode

The i2c_get_status() function returns the current status of the I2C engine. The return codes can be defined as an enum structure:

```
typedef enum I2C_mode {
  IDLE,
  MASTER_SEND,
  MASTER_RECEIVE,
  SLAVE_SEND,
  SLAVE_RECEIVE
} I2C_MODE_T;
```

22.4.5 I2C ROM driver pointer

The I2C ROM driver resides in the address 0x1FFF1FF8. The address must be declared to allow access to the ROM driver:

```
#define ROM_DRIVERS_PTR ((ROM *)(*((unsigned int *)0x1FFF1FF8)))
```

22.4.6 API function table

A structure needs to be defined to allow access of the I2C ROM driver:

```
typedef struct I2CD_API { // index of all the i2c driver functions
void (*i2c_isr_handler) (I2C_HANDLE_T* h_i2c); // ISR interrupt service request
```

Chapter 22: LPC11Axx I2C-bus ROM driver routines

```
// MASTER functions ***
ErrorCode_t (*i2c_master_transmit_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,
                                    I2C RESULT* ptr );
ErrorCode_t (*i2c_master_receive_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp,
                                  I2C_RESULT* ptr );
ErrorCode_t (*i2c_master_tx_rx_poll)(I2C_HANDLE_T* h_i2c,I2C_PARAM* ptp,
                                 I2C RESULT* ptr );
ErrorCode_t (*i2c_master_transmit_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr);
ErrorCode_t (*i2c_master_receive_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr );
ErrorCode_t (*i2c_master_tx_rx_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr );
// SLAVE functions ***
ErrorCode_t (*i2c_slave_receive_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr );
ErrorCode_t (*i2c_slave_transmit_poll)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr);
ErrorCode_t (*i2c_slave_receive_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr );
ErrorCode_t (*i2c_slave_transmit_intr)(I2C_HANDLE_T* h_i2c, I2C_PARAM* ptp, I2C_RESULT* ptr );
ErrorCode_t (*i2c_set_slave_addr)(I2C_HANDLE_T* h_i2c,
                   uint32_t slave_addr_0_3, uint32_t slave_mask_0_3);
// OTHER functions
uint32 t (*i2c get mem size)(void); //ramsize in bytes memory needed by I2C drivers
I2C_HANDLE_T* (*i2c_setup)(uint32_t i2c_base_addr, uint32_t *start_of_ram);
ErrorCode_t (*i2c_set_bitrate)(I2C_HANDLE_T* h_i2c, uint32_t P_clk_in_hz,
                 uint32_t bitrate_in_bps);
uint32_t (*i2c_get_firmware_version)();
I2C_MODE_T (*i2c_get_status)(I2C_HANDLE_T* h_i2c );
} I2CD_API_T;
```

22.4.7 I2C Set-up

Before calling any setup functions in the I2C ROM, the application program is responsible for doing the following:

- 1. Enable the clock to the I2C peripheral.
- 2. Enable the two pins required for the SCL and SDA outputs of the I2C peripheral.
- 3. Allocate a RAM area for dedicated use of the I2C ROM Driver.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

After the I2C block is configured, the I2C ROM driver variables have to be set up:

- 1. Initialize pointer to the I2C API function table.
- 2. Declare the PARAM and RESULT struct.
- 3. Declare Error Code struct.
- 4. Declare the transmit and receive buffer.

If interrupts are used, then additional driver variables have to be set up:

- 1. Declare the I2C CALLBK T type.
- 2. Declare callback functions.
- 3. Declare I2C ROM Driver ISR within the I2C ISR.
- 4. Enable I2C interrupt.

22.4.8 I2C Master mode set-up

The I2C ROM Driver support polling and interrupts. In the master mode, 7-bit and 10-bit addressing are supported. The setup is as follows:

- Allocate SRAM for the I2C ROM Driver by making a call to the i2c_get_mem_size() function.
- 2. Create the I2C handle by making a call to the i2c_setup() function.
- 3. Set the I2C operating frequency by making a call to the i2c_set_bitrate() function.

```
pI2cApi = ROM_DRIVERS_PTR->pI2CD; //setup I2C function table pointer

size_in_bytes = pI2cApi->i2c_get_mem_size();

i2c_handle = pI2cApi->i2c_setup(LPC_I2C_BASE, (uint32_t *)&I2C_Handle[0]);

error_code = pI2cApi->i2c_set_bitrate((I2C_HANDLE_T*)i2c_handle, PCLK_in_Hz, bps_in_hz);
```

22.4.9 I2C Slave mode set-up

The I2C ROM Driver support polling and interrupts in the slave mode. In the slave mode, only 7-bit addressing is supported. The set-up is as follows:

- Allocate SRAM for the I2C ROM Driver by making a call to the i2c_get_mem_size() function.
- 2. Create the I2C handle by making a call to the i2c_setup() function.
- Set the I2C operating frequency by making a call to the i2c_set_bitrate() function.
- 4. Set the slave address by making a call to the i2c_set_slave_addr() function.

The I2C ROM driver allows setting up to 4 slave addresses and 4 address masks as well as possibly enabling the General Call address.

The four slave address bytes are packed into the 4 byte variable. Slave address byte 0 is the least significant byte and Slave address byte 3 is the most significant byte. The Slave address mask bytes are ordered the same way in the other 32 bit variable. When in slave

Chapter 22: LPC11Axx I2C-bus ROM driver routines

receive mode, all of these addresses (or groups if masks are used) will be monitored for a match. If the General Call bit (least significant bit of any of the four slave address bytes) is set, then the General Call address of 0x00 is monitored as well.


```
pI2cApi = ROM_DRIVERS_PTR->pI2CD; //setup I2C function table pointer
size_in_bytes = pI2cApi->i2c_get_mem_size();
i2c_handle = pI2cApi->i2c_setup(LPC_I2C_BASE, (uint32_t *)&I2C_Handle[0]);
error_code = pI2cApi->i2c_set_bitrate((I2C_HANDLE_T*)i2c_handle, PCLK_in_Hz, bps_in_hz);
error_code = pI2cApi->i2c_set_slave_addr((I2C_HANDLE_T*)i2c_handle, slave_addr, slave_addr_mask);
```

22.4.10 I2C Master Transmit/Receive

The Master mode drivers give the user the choice of either polled (wait for the message to finish) or interrupt driven routines (non-blocking). Polled routines are recommended for testing purposes or very simple I2C applications. These routines allow the Master to send to Slaves with 7-bit or 10-bit addresses.

The following routines are polled routines:

```
err_code i2c_master_transmit_poll(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_master_receive_poll(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_master_tx_rx_poll (I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)
```

The following routines are interrupt driven routines:

```
err_code i2c_master_transmit_intr(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_master_receive_intr(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_master_tx_rx_intr(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)
```

Where:

- err_code is the return state of the function. An "0" indicates success. All non-zero indicates an error. Refer to Error Table.
- I2C_PARM* is a structure with parameters passed to the function. Refer to Section 22.4.2.
- I2C_RESULT* is a containing the results after the function executes.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

To initiate a master mode write/read the I2C_PARAM has to be setup. The I2C_PARAM is a structure with various variables needed by the I2C ROM Driver to operate correctly. The structure contains the following:

- Number of bytes to be transmitted.
- Number of bytes to be receive.
- Pointer to the transmit buffer.
- Pointer to the receive buffer.
- Pointer to callback function.
- Stop flag.

The RESULT structure contains the results after the function executes. The structure contains the following:

- Number of bytes transmitted.
- Number of bytes received.

Remark: The number of bytes transmitted will be updated for i2c_master_transmit_intr() and i2c_master_transmit_poll(). The number of bytes received will only be update on i2c_master_receive_poll(), i2c_master_receive_intr(), i2c_master_tx_rx_poll(), and i2c_master_tx_rx_intr().

In all the master mode routines, the transmit buffer's first byte must be the slave address with the R/W bit set to "0". To enable a master read, the receive buffer's first byte must be the slave address with the R/W bit set to "1".

The following conditions must be fulfilled to use the I2C driver routines in master mode:

- For 7-bit addressing, the first byte of the send buffer must have the slave address in the most significant 7 bits and the least significant (R/W) bit = 0. Example: Slave address 0x53, first byte is 0xA6.
- For 7-bit addressing, the first byte of the receive buffer must have the slave address in the most significant 7 bits and the least significant (R/W) bit = 1. Example: Slave Addr 0x53, first byte 0xA7.
- For 10-bit address, the first byte of the transmit buffer must have the slave address most significant 2 bits with the (R/W) bit =0. The second byte must contain the remaining 8-bit of the slave address.
- For 10-bit address, the first byte of the receive buffer must have the slave address most significant 2 bits with the (R/W) bit =1. The second byte must contain the remaining 8-bit of the slave address.
- The number of bytes to be transmitted should include the first byte of the buffer which is the slave address byte. Example: 2 data bytes + 7-bit slave addr = 3.
- The application program must enable I2C interrupts. When I2C interrupt occurs, the i2c_isr_handler function must be called from the application program.

When using the interrupt function calls, the callback functions must be define. Upon the completion of a read/write as specified by the PARAM structure, the callback functions will be invoked.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

22.4.11 The I2C Slave Mode Transmit/Receive

In slave mode, polled routines are intended for testing purposes. It is up to the user to decide whether to use the polled or interrupt driven mode. While operating the Slave driver in polled mode can be useful for program development and debugging, most applications will need the interrupt-driven versions of Slave Receive and Transmit in the final software.

The following routines are polled routines:

```
err_code i2c_slave_receive_poll(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_slave_transmit_poll(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)
```

The following routines are interrupt driven routines:

```
err_code i2c_slave_receive_intr(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)

err_code i2c_slave_transmit_intr(I2C_HANDLE_T*, I2C_PARAM*, I2C_RESULT*)
```

Where:

- err_code is the return state of the function. An 0 indicates success. All non-zero indicates an error. Refer to the Error Code Table.
- I2C_PARM is a structure with parameters passed to the function. <u>Section 22.4.2</u>.
- I2C_RESULT is a containing the results after the function executes. Section 22.4.2.

To initiate a master-mode write/read the I2C_PARAM has to be setup. The I2C_PARAM is a structure with various variables needed by the I2C ROM Driver to operate correctly. The structure contains the following:

- Number of bytes to be transmitted.
- Number of bytes to be received.
- Pointer to the transmit buffer.
- Pointer to the receive buffer.
- · Pointer to callback function.
- Stop flag.

The RESULT structure contains the results after the function executes. The structure contains the following:

- Number of bytes transmitted.
- Number of bytes received.

Remark: The number of bytes transmitted is updated only for i2c_slave_send_poll() and i2c_slave_send_intr(). The number of bytes received is updated only for i2c_slave_receive_poll() and i2c_slave_receive_intr().

To initiate a slave mode communication, the receive function is called. This can be either the polling or interrupt driven function, i2c_slave_receive_poll() or i2c_slave_receive_intr(), respectively. The receive buffer should be as large or larger than any data or command that will be received. If the amount of data exceed the receive buffer size, an error code will be returned.

Chapter 22: LPC11Axx I2C-bus ROM driver routines

In slave-receive mode, the driver receives data until one of the following are true:

- Address matching set in the set_slave_addr() function with the R/W bit set to 1
- STOP or repeated START is received
- · An error condition is detected

When using the interrupt function calls, the callback functions must be define. Upon the completion of a read/write as specified by the PARAM structure, the callback functions will be invoked.

User manual

UM10527

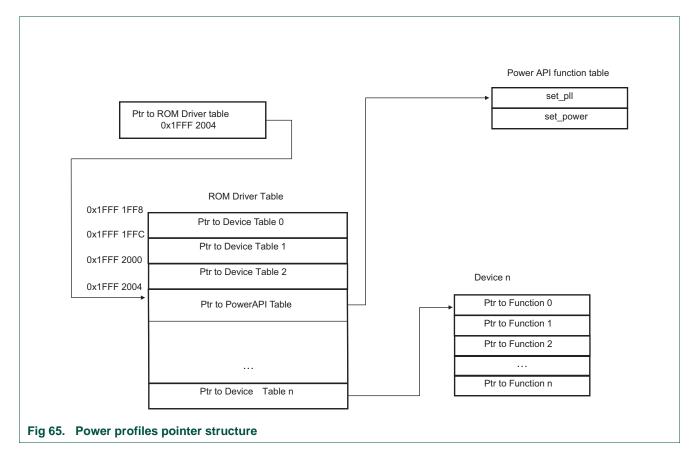
Chapter 23: LPC11Axx Power profiles

Rev. 5 — 21 January 2013

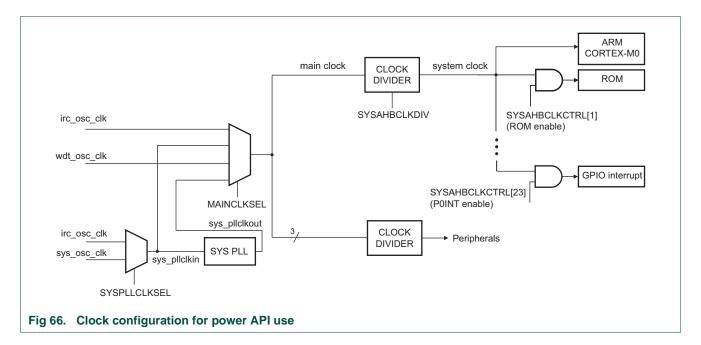
User manual

23.1 How to read this chapter

The power profiles are available on all LPC11Axx parts.


23.2 Features

- Power Management services
- · Clocking services


23.3 General description

The API calls to the ROM are performed by executing functions which are pointed by a pointer within the ROM Driver Table. <u>Figure 65</u> shows the pointer structure used to call the Power Profiles API.

Remark: Disable all interrupts before making calls to the power profile API. You can re-enable the interrupts after the power profile API calls have completed.

Chapter 23: LPC11Axx Power profiles

23.4 Definitions

The following elements have to be defined in an application that uses the power profiles:

```
typedef struct _PWRD {
       void (*set_pll)(unsigned int cmd[], unsigned int resp[]);
       void (*set_power)(unsigned int cmd[], unsigned int resp[]);
} PWRD;
typedef struct _ROM {
       const unsigned p_dev1;
       const unsigned p_dev2;
       const unsigned p_dev3;
       const PWRD *pPWRD;
       const LPC_ROM_DIV_STUCT * pROMDiv;
       const unsigned p_dev4;
       const unsigned p_dev5;
       const unsigned p_dev6;
} ROM;
ROM ** rom = (ROM **) 0x1FFF1FF8;
unsigned int command[4], result[2];
```

23.5 Clocking routine

23.5.1 set_pll

This routine sets up the system PLL according to the calling arguments. If the expected clock can be obtained by simply dividing the system PLL input, set_pll bypasses the PLL to lower system power consumption.

UM10527

Chapter 23: LPC11Axx Power profiles

Remark: Before this routine is invoked, the PLL clock source (IRC/system oscillator) must be selected (<u>Table 11</u>), the main clock source must be set to the input clock to the system PLL (<u>Table 13</u>) and the system/AHB clock divider must be set to 1 (<u>Table 15</u>).

set_pll attempts to find a PLL setup that matches the calling parameters. Once a combination of a feedback divider value (SYSPLLCTRL, M), a post divider ratio (SYSPLLCTRL, P) and the system/AHB clock divider (SYSAHBCLKDIV) is found, set_pll applies the selected values and switches the main clock source selection to the system PLL clock out (if necessary).

The routine returns a result code that indicates if the system PLL was successfully set (PLL_CMD_SUCCESS) or not (in which case the result code identifies what went wrong). The current system frequency value is also returned. The application should use this information to adjust other peripheral clocks in the device.

Table 280. set_pll routine

Routine	set_pll
Input	Param0: system PLL input frequency (in kHz)
	Param1: expected system clock (in kHz)
	Param2: mode (CPU_FREQ_EQU, CPU_FREQ_LTE, CPU_FREQ_GTE, CPU_FREQ_APPROX)
	Param3: system PLL lock time-out
Result	Result0: PLL_CMD_SUCCESS PLL_INVALID_FREQ PLL_INVALID_MODE PLL_FREQ_NOT_FOUND PLL_NOT_LOCKED
	Result1: system clock (in kHz)

The following definitions are needed when making set_pll power routine calls:

```
/* set pll mode options */
            CPU_FREQ_EQU
                                      ()
#define
            CPU FREQ LTE
#define
                                      1
#define
            CPU FREQ GTE
                                      2
#define
            CPU_FREQ_APPROX
                                      3
/* set_pll result0 options */
#define
            PLL CMD SUCCESS
                                      0
#define
            PLL_INVALID_FREQ
                                      1
#define
            PLL INVALID MODE
                                      2
#define
            PLL FREQ NOT FOUND
                                      3
            PLL_NOT_LOCKED
#define
```

For a simplified clock configuration scheme see Figure 66. For more details see Figure 4.

23.5.1.1 Param0: system PLL input frequency and Param1: expected system clock

set_pll looks for a setup in which the system PLL clock does not exceed 50 MHz. It easily finds a solution when the ratio between the expected system clock and the system PLL input frequency is an integer value, but it can also find solutions in other cases.

The system PLL input frequency (*Param0*) must be between 10000 to 25000 kHz (10 MHz to 25 MHz) inclusive. The expected system clock (*Param1*) must be between 1 and 50000 kHz inclusive. If either of these requirements is not met, *set_pll* returns PLL_INVALID_FREQ and returns *Param0* as *Result1* since the PLL setting is unchanged.

Chapter 23: LPC11Axx Power profiles

23.5.1.2 Param2: mode

The first priority of set_pll is to find a setup that generates the system clock at exactly the rate specified in Param1. If it is unlikely that an exact match can be found, input parameter mode (Param2) should be used to specify if the actual system clock can be less than or equal, greater than or equal or approximately the value specified as the expected system clock (Param1).

A call specifying CPU_FREQ_EQU will only succeed if the PLL can output exactly the frequency requested in *Param1*.

CPU_FREQ_LTE can be used if the requested frequency should not be exceeded (such as overall current consumption and/or power budget reasons).

CPU_FREQ_GTE helps applications that need a minimum level of CPU processing capabilities.

CPU_FREQ_APPROX results in a system clock that is as close as possible to the requested value (it may be greater than or less than the requested value).

If an illegal mode is specified, set_pll returns PLL_INVALID_MODE. If the expected system clock is out of the range supported by this routine, set_pll returns PLL_FREQ_NOT_FOUND. In these cases the current PLL setting is not changed and Param0 is returned as Result1.

23.5.1.3 Param3: system PLL lock time-out

It should take no more than 100 μ s for the system PLL to lock if a valid configuration is selected. If Param3 is zero, set_pll will wait indefinitely for the PLL to lock. A non-zero value indicates how many times the code will check for a successful PLL lock event before it returns PLL_NOT_LOCKED. In this case the PLL settings are unchanged and Param0 is returned as Result1.

Remark: The time it takes the PLL to lock depends on the selected PLL input clock source (IRC/system oscillator) and its characteristics. The selected source can experience more or less jitter depending on the operating conditions such as power supply and/or ambient temperature. This is why it is suggested that when a good known clock source is used and a PLL_NOT_LOCKED response is received, the set_pll routine should be invoked several times before declaring the selected PLL clock source invalid.

Hint: setting *Param3* equal to the system PLL frequency [Hz] divided by 10000 will provide more than enough PLL lock-polling cycles.

23.5.1.4 Code examples

The following examples illustrate some of the features of set_pll discussed above.

23.5.1.4.1 Invalid frequency (device maximum clock rate exceeded)

```
command[0] = 12000;
command[1] = 60000;
command[2] = CPU_FREQ_EQU;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

Chapter 23: LPC11Axx Power profiles

The above code specifies a 12 MHz PLL input clock and a system clock of exactly 60 MHz. The application was ready to infinitely wait for the PLL to lock. But the expected system clock of 60 MHz exceeds the maximum of 50 MHz. Therefore <code>set_pll</code> returns PLL_INVALID_FREQ in <code>result[0]</code> and 12000 in <code>result[1]</code> without changing the PLL settings.

23.5.1.4.2 Invalid frequency selection (system clock divider restrictions)

```
command[0] = 12000;
command[1] = 40;
command[2] = CPU_FREQ_LTE;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of no more than 40 kHz and no time-out while waiting for the PLL to lock. Since the maximum divider value for the system clock is 255 and running at 40 kHz would need a divide by value of 300, set_pll returns PLL_INVALID_FREQ in result[0] and 12000 in result[1] without changing the PLL settings.

23.5.1.4.3 Exact solution cannot be found (PLL)

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_EQU;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock and a system clock of exactly 25 MHz. The application was ready to infinitely wait for the PLL to lock. Since there is no valid PLL setup within earlier mentioned restrictions, set_pll returns PLL_FREQ_NOT_FOUND in result[0] and 12000 in result[1] without changing the PLL settings.

23.5.1.4.4 System clock less than or equal to the expected value

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_LTE;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of no more than 25 MHz and no locking time-out. set_pll returns PLL_CMD_SUCCESS in result[0] and 24000 in result[1]. The new system clock is 24 MHz.

23.5.1.4.5 System clock greater than or equal to the expected value

```
command[0] = 12000;
command[1] = 25000;
command[2] = CPU_FREQ_GTE;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

Chapter 23: LPC11Axx Power profiles

The above code specifies a 12 MHz PLL input clock, a system clock of at least 25 MHz and no locking time-out. set_pll returns PLL_CMD_SUCCESS in result[0] and 36 000 in result[1]. The new system clock is 36 MHz.

23.5.1.4.6 System clock approximately equal to the expected value

```
command[0] = 12000;
command[1] = 16500;
command[2] = CPU_FREQ_APPROX;
command[3] = 0;
(*rom)->pWRD->set_pll(command, result);
```

The above code specifies a 12 MHz PLL input clock, a system clock of approximately 16.5 MHz and no locking time-out. set_pll returns PLL_CMD_SUCCESS in result[0] and 16000 in result[1]. The new system clock is 16 MHz.

23.6 Power routine

23.6.1 set_power

This routine configures the device's internal power control settings according to the calling arguments. The goal is to reduce active power consumption while maintaining the feature of interest to the application close to its optimum.

Remark: The set_power routine was designed for systems employing the configuration of SYSAHBCLKDIV = 1 (System clock divider register, see <u>Table 15</u> and <u>Figure 66</u>). Using this routine in an application with the system clock divider not equal to 1 might not improve microcontroller's performance as much as in setups when the main clock and the system clock are running at the same rate.

set_power returns a result code that reports whether the power setting was successfully changed or not.

Chapter 23: LPC11Axx Power profiles

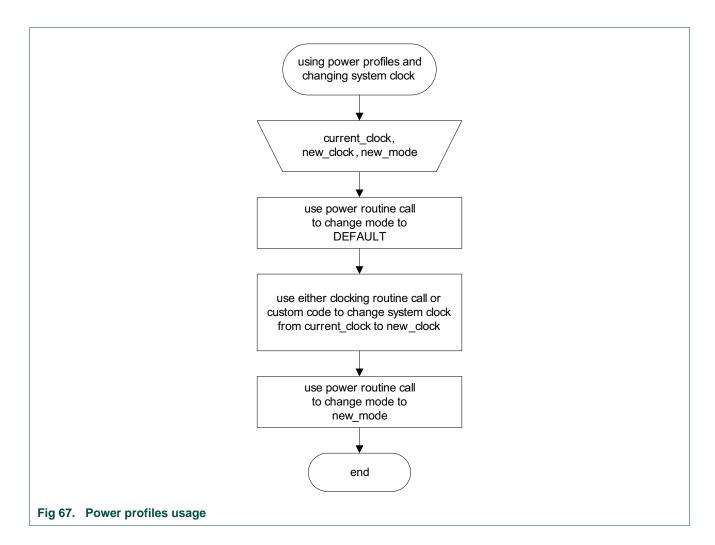


Table 281. set_power routine

Routine	set_power
Input	Param0: main clock (in MHz)
	Param1: mode (PWR_DEFAULT, PWR_CPU_PERFORMANCE, PWR_EFFICIENCY, PWR_LOW_CURRENT)
	Param2: system clock (in MHz)
Result	Result0: PWR_CMD_SUCCESS PWR_INVALID_FREQ PWR_INVALID_MODE

The following definitions are needed for set_power routine calls:

```
/* set_power mode options */
#define
            PWR_DEFAULT
                                     0
#define
            PWR_CPU_PERFORMANCE 1
#define
            PWR EFFICIENCY
                                     2
#define
            PWR_LOW_CURRENT
                                     3
/* set_power result0 options */
            PWR CMD SUCCESS
#define
                                     0
#define
            PWR_INVALID_FREQ
                                     1
#define
            PWR_INVALID_MODE
                                     2
```

Chapter 23: LPC11Axx Power profiles

For a simplified clock configuration scheme see Figure 66. For more details see Figure 4.

23.6.1.1 Param0: main clock

The main clock is the clock rate the microcontroller uses to source the system's and the peripherals' clock. It is configured by either a successful execution of the clocking routine call or a similar code provided by the user. This operand must be an integer between 1 to 50 MHz inclusive. If a value out of this range is supplied, *set_power* returns PWR INVALID FREQ and does not change the power control system.

23.6.1.2 Param1: mode

The input parameter mode (*Param1*) specifies one of four available power settings. If an illegal selection is provided, *set_power* returns PWR_INVALID_MODE and does not change the power control system.

PWR DEFAULT keeps the device in a baseline power setting similar to its reset state.

PWR_CPU_PERFORMANCE configures the microcontroller so that it can provide more processing capability to the application. CPU performance is 30% better than the default option.

PWR_EFFICIENCY setting was designed to find a balance between active current and the CPU's ability to execute code and process data. In this mode the device outperforms the default mode both in terms of providing higher CPU performance and lowering active current.

PWR_LOW_CURRENT is intended for those solutions that focus on lowering power consumption rather than CPU performance.

23.6.1.3 Param2: system clock

The system clock is the clock rate at which the microcontroller core is running when set_power is called. This parameter is an integer between from 1 and 50 MHz inclusive.

23.6.1.4 Code examples

The following examples illustrate some of the set_power features discussed above.

23.6.1.4.1 Invalid frequency (device maximum clock rate exceeded)

```
command[0] = 60;
command[1] = PWR_CPU_PERFORMANCE;
command[2] = 60;
(*rom)->pWRD->set_power(command, result);
```

The above setup would be used in a system running at the main and system clock of 60 MHz, with a need for maximum CPU processing power. Since the specified 60 MHz clock is above the 50 MHz maximum, set_power returns PWR_INVALID_FREQ in result[0] without changing anything in the existing power setup.

23.6.1.4.2 An applicable power setup

```
command[0] = 24;
command[1] = PWR_CPU_EFFICIENCY;
command[2] = 24;
```

Chapter 23: LPC11Axx Power profiles

(*rom)->pWRD->set_power(command, result);

The above code specifies that an application is running at the main and system clock of 24 MHz with emphasis on efficiency. set_power returns PWR_CMD_SUCCESS in result[0] after configuring the microcontroller's internal power control features.

UM10527

Chapter 24: LPC11Axx Serial wire debug

Rev. 5 — 21 January 2013

User manual

24.1 How to read this chapter

The debug functionality is identical for all LPC11Axx parts. The location of the primary SWD pins after the boot loader has executed is different for the WLCSP and the HVQFN and LQFP packages.

Table 282. SWD primary pin location

Package	SWD primary pins		
	SWCLK		
WLCSP	PIO0_2	PIO0_3	
LQFP	PIO0_5	PIO0_10	
HVQFN	PIO0_5	PIO0_10	

24.2 Features

- Supports ARM Serial Wire Debug mode.
- Direct debug access to all memories, registers, and peripherals.
- No target resources are required for the debugging session.
- · Four breakpoints.
- Two data watchpoints that can also be used as triggers.
- Supports JTAG boundary scan.

24.3 General description

Debug functions are integrated into the ARM Cortex-M0. Serial wire debug functions are supported. The ARM Cortex-M0 is configured to support up to four breakpoints and two watchpoints.

Support for boundary scan is available.

24.4 Pin description

The tables below indicate the various pin functions related to debug. Some of these functions share pins with other functions which therefore may not be used at the same time. To maximize I/O flexibility, each of these signals can be on either of two pins. See Table 85 for pinning information. For debugging, exactly one pin must be selected as SWCLK and exactly one as SWDIO.

Chapter 24: LPC11Axx Serial wire debug

Table 283. Serial Wire Debug pin description

Pin Name	Type	Description
SWCLK	Input	Serial Wire Clock. This pin is the clock for debug logic when in the Serial Wire Debug mode (SWDCLK). For the SWD function, a pull-up resistor is recommended on this pin.
SWDIO	Input/ Output	Serial wire debug data input/output. The SWDIO pin is used by an external debug tool to communicate with and control the LPC11Axx. For the SWD function, a pull-up resistor is recommended on this pin.

Table 284. JTAG boundary scan pin description

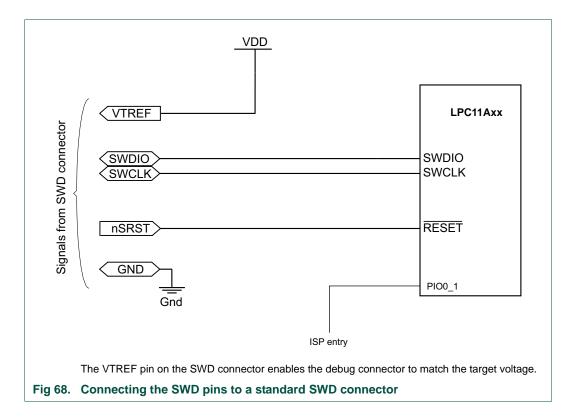
Pin Name	Туре	Description
TCK	Input	JTAG Test Clock. This pin is the clock for JTAG boundary scan
	mpat	when the RESET pin is LOW.
TMS	Input	JTAG Test Mode Select. The TMS pin selects the next state in the TAP state machine. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.
TDI	Input	JTAG Test Data In. This is the serial data input for the shift register. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.
TDO	Output	JTAG Test Data Output. This is the serial data output from the shift register. Data is shifted out of the device on the negative edge of the TCK signal. This pin is used for JTAG boundary scan when the RESET pin is LOW.
TRST	Input	JTAG Test Reset. The TRST pin can be used to reset the test logic within the debug logic. This pin includes an internal pull-up and is used for JTAG boundary scan when the RESET pin is LOW.

24.5 Functional description

24.5.1 Debug limitations

On the WLCSP package, the TCK signal is shared with the VDDCMP input on pin PIO0_5. To perform a boundary scan on a blank device, make sure that the PIO0_5 pin is not filtered on the board. The bypass filter usually added to the comparator voltage reference input (VDDCMP) filters out the SWCLK/TCK input signal.

For SWD debug, an alternative TCK/SWCLK clock pin is available on pin PIO0_2. This is the default function after booting for the WLCSP package.


24.5.2 Systick timer in debug mode

During a debugging session, the System Tick Timer is automatically stopped whenever the CPU is stopped. Other peripherals are not affected.

24.5.3 Debug connections for SWD

For debugging purposes, it is useful to provide access to the ISP entry pin PIO0_1. This pin can be used to recover the part from configurations which would disable the SWD port such as improper PLL configuration or reconfiguration of SWD pins as ADC inputs. This pin can be used for other functions such as GPIO, but it should not be held LOW on power-up or reset.

Chapter 24: LPC11Axx Serial wire debug

24.5.4 Boundary scan

Debug functions are integrated into the ARM Cortex-M0. Serial wire debug functions are supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0 is configured to support up to four breakpoints and two watch points.

The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC11Axx is in reset.

To perform boundary scan testing, follow these steps:

- 1. Erase any user code residing in flash.
- 2. Power up the part with the RESET pin pulled HIGH externally.
- 3. Wait for at least 250 µs.
- 4. Pull the RESET pin LOW externally.
- 5. Perform boundary scan operations.
- 6. Once the boundary scan operations are completed, assert the TRST pin to enable the SWD debug mode and release the RESET pin (pull HIGH).

Remark: The JTAG interface cannot be used for debug purposes.

Remark: POR, BOD reset, or a LOW on the TRST pin puts the test TAP controller in the Test-Logic Reset state. The first TCK clock while RESET = HIGH places the test TAP in Run-Test Idle mode.

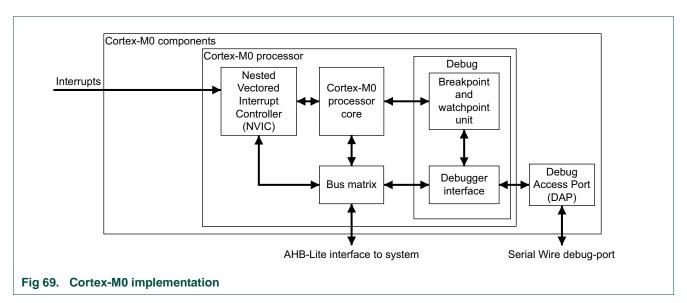
UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Rev. 5 — 21 January 2013

User manual

25.1 How to read this chapter


The following material is using the ARM *Cortex-M0 User Guide*. The following minor changes have been made regarding the specific implementation of the Cortex-M0 for the LPC11Axx:

Deep-sleep mode not implemented

25.2 About the Cortex-M0 processor and core peripherals

The Cortex-M0 processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- a simple architecture that is easy to learn and program
- ultra-low power, energy efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family.

The Cortex-M0 processor is built on a highly area and power optimized 32-bit processor core, with a 3-stage pipeline von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

The Cortex-M0 processor implements the ARMv6-M architecture, which is based on the 16-bit Thumb instruction set and includes Thumb-2 technology. This provides the exceptional performance expected of a modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

The Cortex-M0 processor closely integrates a configurable **Nested Vectored Interrupt Controller** (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- · provides zero jitter interrupt option
- provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of **interrupt service routines** (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep-sleep function that enables the entire device to be rapidly powered down.

25.2.1 System-level interface

The Cortex-M0 processor provides a single system-level interface using AMBA technology to provide high speed, low latency memory accesses.

25.2.2 Integrated configurable debug

The Cortex-M0 processor implements a complete hardware debug solution, with extensive hardware breakpoint and watchpoint options. This provides high system visibility of the processor, memory and peripherals through a 2-pin **Serial Wire Debug** (SWD) port that is ideal for microcontrollers and other small package devices.

25.2.3 Cortex-M0 processor features summary

- high code density with 32-bit performance
- tools and binary upwards compatible with Cortex-M processor family
- integrated ultra low-power sleep modes
- efficient code execution permits slower processor clock or increases sleep mode time
- single-cycle 32-bit hardware multiplier
- zero jitter interrupt handling
- extensive debug capabilities.

25.2.4 Cortex-M0 core peripherals

These are:

NVIC — The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

System Control Block — The **System Control Block** (SCB) is the programmers model interface to the processor. It provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

System timer — The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer or as a simple counter.

25.3 Processor

25.3.1 Programmers model

This section describes the Cortex-M0 programmers model. In addition to the individual core register descriptions, it contains information about the processor modes and stacks.

25.3.1.1 Processor modes

The processor **modes** are:

Thread mode — Used to execute application software. The processor enters Thread mode when it comes out of reset.

Handler mode — Used to handle exceptions. The processor returns to Thread mode when it has finished all exception processing.

25.3.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last stacked item on the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The processor implements two stacks, the main stack and the process stack, with independent copies of the stack pointer, see <u>Section 25.3.1.3.2</u>.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack, see <u>Section 25–25.3.1.3.7</u>. In Handler mode, the processor always uses the main stack. The options for processor operations are:

Table 285. Summary of processor mode and stack use options

Processor mode	Used to execute	Stack used
Thread	Applications	Main stack or process stack See Section 25–25.3.1.3.7
Handler	Exception handlers	Main stack

25.3.1.3 Core registers

The processor core registers are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

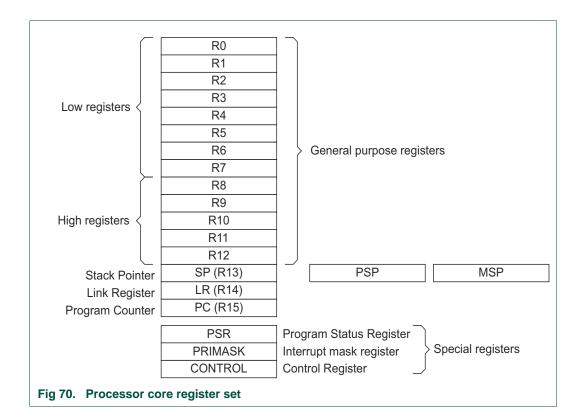


Table 286. Core register set summary

Name	Type[1]	Reset value	Description
R0-R12	RW	Unknown	Section 25–25.3.1.3.1
MSP	RW	See description	Section 25–25.3.1.3.2
PSP	RW	Unknown	Section 25–25.3.1.3.2
LR	RW	Unknown	Section 25–25.3.1.3.3
PC	RW	See description	Section 25–25.3.1.3.4
PSR	RW	Unknown[2]	<u>Table 25–287</u>
APSR	RW	Unknown	<u>Table 25–288</u>
IPSR	RO	0x00000000	<u>Table 289</u>
EPSR	RO	Unknown[2]	<u>Table 25–290</u>
PRIMASK	RW	0x00000000	<u>Table 25–291</u>
CONTROL	RW	0x00000000	<u>Table 25–292</u>

^[1] Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

25.3.1.3.1 General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

25.3.1.3.2 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to use:

^[2] Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

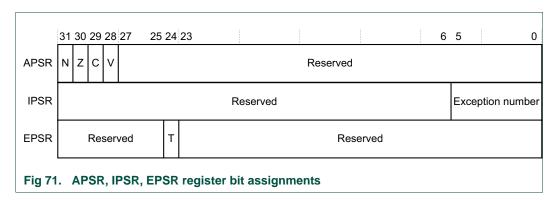
- 0 = Main Stack Pointer (MSP). This is the reset value.
- 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

25.3.1.3.3 Link Register

The **Link Register** (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On reset, the LR value is Unknown.

25.3.1.3.4 Program Counter


The **Program Counter** (PC) is register R15. It contains the current program address. On reset, the processor loads the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

25.3.1.3.5 Program Status Register

The Program Status Register (PSR) combines:

- Application Program Status Register (APSR)
- Interrupt Program Status Register (IPSR)
- Execution Program Status Register (EPSR).

These registers are mutually exclusive bit fields in the 32-bit PSR. The PSR bit assignments are:

Access these registers individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example:

- read all of the registers using PSR with the MRS instruction
- write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 287. PSR register combinations

Туре	Combination
RW[1][2]	APSR, EPSR, and IPSR
RO	EPSR and IPSR
RW[1]	APSR and IPSR
RW[2]	APSR and EPSR
	RW[1][2] RO RW[1]

^[1] The processor ignores writes to the IPSR bits.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

[2] Reads of the EPSR bits return zero, and the processor ignores writes to the these bits

See the instruction descriptions <u>Section 25–25.4.7.6</u> and <u>Section 25–25.4.7.7</u> for more information about how to access the program status registers.

Application Program Status Register: The APSR contains the current state of the condition flags, from previous instruction executions. See the register summary in <u>Table 25–286</u> for its attributes. The bit assignments are:

Table 288. APSR bit assignments

Bits	Name	Function
[31]	N	Negative flag
[30]	Z	Zero flag
[29]	С	Carry or borrow flag
[28]	V	Overflow flag
[27:0]	-	Reserved

See <u>Section 25.4.4.1.4</u> for more information about the APSR negative, zero, carry or borrow, and overflow flags.

Interrupt Program Status Register: The IPSR contains the exception number of the current **Interrupt Service Routine** (ISR). See the register summary in <u>Table 25–286</u> for its attributes. The bit assignments are:

Table 289. IPSR bit assignments

Bits	Name	Function
[31:6]	-	Reserved
[5:0]	Exception number	This is the number of the current exception:
		0 = Thread mode
		1 = Reserved
		2 = NMI
		3 = HardFault
		4-10 = Reserved
		11 = SVCall
		12, 13 = Reserved
		14 = PendSV
		15 = SysTick
		16 = IRQ0
		47 = IRQ31
		48-63 = Reserved.
		see <u>Section 25–25.3.3.2</u> for more information.

Execution Program Status Register: The EPSR contains the Thumb state bit.

See the register summary in <u>Table 25–286</u> for the EPSR attributes. The bit assignments are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 290. EPSR bit assignments

Bits	Name	Function
[31:25]	-	Reserved
[24]	T	Thumb state bit
[23:0]	-	Reserved

Attempts by application software to read the EPSR directly using the MRS instruction always return zero. Attempts to write the EPSR using the MSR instruction are ignored. Fault handlers can examine the EPSR value in the stacked PSR to determine the cause of the fault. See Section 25–25.3.3.6. The following can clear the T bit to 0:

- instructions BLX, BX and POP{PC}
- restoration from the stacked xPSR value on an exception return
- bit[0] of the vector value on an exception entry.

Attempting to execute instructions when the T bit is 0 results in a HardFault or lockup. See Section 25–25.3.4.1 for more information.

Interruptible-restartable instructions: The interruptible-restartable instructions are LDM and STM. When an interrupt occurs during the execution of one of these instructions, the processor abandons execution of the instruction.

After servicing the interrupt, the processor restarts execution of the instruction from the beginning.

25.3.1.3.6 Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable exceptions where they might impact on timing critical tasks or code sequences requiring atomicity.

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS instruction, to change the value of PRIMASK. See <u>Section 25–25.4.7.6</u>, <u>Section 25–25.4.7.7</u>, and <u>Section 25–25.4.7.2</u> for more information.

Priority Mask Register: The PRIMASK register prevents activation of all exceptions with configurable priority. See the register summary in <u>Table 25–286</u> for its attributes. The bit assignments are:

Table 291. PRIMASK register bit assignments

Bits	Name	Function
[31:1]	-	Reserved
[0]	PRIMASK	0 = no effect1 = prevents the activation of all exceptions with configurable priority.
		·

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.3.1.3.7 CONTROL register

The CONTROL register controls the stack used when the processor is in Thread mode. See the register summary in Table 25–286 for its attributes. The bit assignments are:

Table 292. CONTROL register bit assignments

Name	Function
-	Reserved
Active stack	Defines the current stack:
pointer	0 = MSP is the current stack pointer
	1 = PSP is the current stack pointer.
	In Handler mode this bit reads as zero and ignores writes.
-	Reserved.
	- Active stack

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CONTROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, it is recommended that threads running in Thread mode use the process stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruction to set the Active stack pointer bit to 1, see Section 25–25.4.7.6.

Remark: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute using the new stack pointer. See Section 25–25.4.7.5.

25.3.1.4 Exceptions and interrupts

The Cortex-M0 processor supports interrupts and system exceptions. The processor and the **Nested Vectored Interrupt Controller** (NVIC) prioritize and handle all exceptions. An interrupt or exception changes the normal flow of software control. The processor uses handler mode to handle all exceptions except for reset. See <u>Section 25–25.3.3.6.1</u> and <u>Section 25–25.3.3.6.2</u> for more information.

The NVIC registers control interrupt handling. See <u>Section 25–25.5.2</u> for more information.

25.3.1.5 Data types

The processor:

- supports the following data types:
 - 32-bit words
 - 16-bit halfwords
 - 8-bit bytes
- manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB) accesses are always little-endian. See <u>Section 25–25.3.2.1</u> for more information.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.3.1.6 The Cortex Microcontroller Software Interface Standard

ARM provides the **Cortex Microcontroller Software Interface Standard** (CMSIS) for programming Cortex-M0 microcontrollers. The CMSIS is an integrated part of the device driver library.

For a Cortex-M0 microcontroller system, CMSIS defines:

- a common way to:
 - access peripheral registers
 - define exception vectors
- the names of:
 - the registers of the core peripherals
 - the core exception vectors
- a device-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M0 processor. It also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

The CMSIS simplifies software development by enabling the reuse of template code, and the combination of CMSIS-compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions that address the processor core and the core peripherals.

Remark: This document uses the register short names defined by the CMSIS. In a few cases these differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

- Section 25.3.5.3 "Power management programming hints"
- Section 25.4.2 "Intrinsic functions"
- Section 25.5.2.1 "Accessing the Cortex-M0 NVIC registers using CMSIS"
- Section 25.5.2.8.1 "NVIC programming hints".

25.3.2 Memory model

This section describes the processor memory map and the behavior of memory accesses. The processor has a fixed memory map that provides up to 4GB of addressable memory. The memory map is shown in Figure 1 on page HIDDEN.

25.3.2.1 Memory regions, types and attributes

The memory map is split into regions. Each region has a defined memory type, and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

The memory types are:

Normal — The processor can re-order transactions for efficiency, or perform speculative reads.

Device — The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

Strongly-ordered — The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include.

Execute Never (XN) — Means the processor prevents instruction accesses. A HardFault exception is generated on executing an instruction fetched from an XN region of memory.

25.3.2.2 System ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which the accesses complete matches the program order of the instructions, providing any re-ordering does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses completing in program order, software must insert a memory barrier instruction between the memory access instructions, see Section 25–25.3.2.4.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory accesses caused by two instructions is:

A2	Normal access	Device access		Strongly- ordered
A1		Non-shareable	Shareable	access
Normal access	-	-	-	-
Device access, non-shareable	-	<	-	<
Device access, shareable	-	-	<	<
Strongly-ordered access	-	<	<	<

Fig 72. Memory ordering restrictions

Where:

- — Means that the memory system does not guarantee the ordering of the accesses.
- Means that accesses are observed in program order, that is, A1 is always observed before A2.

25.3.2.3 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 293. Memory access behavior

Address range	Memory region	Memory type[1]	XN[1]	Description
0x00000000- 0x0fffffff	Code	Normal	-	Executable region for program code. You can also put data here.
0x10000000- 0x3FFFFFFF	SRAM	Normal	-	Executable region for data. You can also put code here.
0x40000000- 0x5FFFFFFF	Peripheral	Device	XN	External device memory.
0x60000000- 0x9FFFFFFF	External RAM	Normal	-	Executable region for data.
0xA000000- 0xDFFFFFFF	External device	Device	XN	External device memory.
0xE000000- 0xE00FFFFF	Private Peripheral Bus	Strongly-ordered	XN	This region includes the NVIC, System timer, and System Control Block. Only word accesses can be used in this region.
0xE0100000- 0xFFFFFFFF	Device	Device	XN	Vendor specific.

^[1] See Section 25–25.3.2.1 for more information.

The Code, SRAM, and external RAM regions can hold programs.

25.3.2.4 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions. This is because:

- the processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruction sequence
- memory or devices in the memory map might have different wait states
- some memory accesses are buffered or speculative.

<u>Section 25–25.3.2.2</u> describes the cases where the memory system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB — The **Data Memory Barrier** (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory transactions. See Section 25–25.4.7.3.

DSB — The **Data Synchronization Barrier** (DSB) instruction ensures that outstanding memory transactions complete before subsequent instructions execute. See <u>Section 25–25.4.7.4</u>.

ISB — The **Instruction Synchronization Barrier** (ISB) ensures that the effect of all completed memory transactions is recognizable by subsequent instructions. See Section 25–25.4.7.5.

The following are examples of using memory barrier instructions:

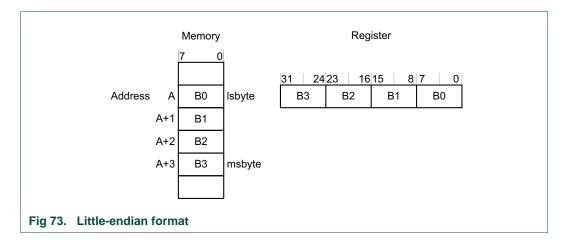
Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Vector table — If the program changes an entry in the vector table, and then enables the corresponding exception, use a DMB instruction between the operations. This ensures that if the exception is taken immediately after being enabled the processor uses the new exception vector.

Self-modifying code — If a program contains self-modifying code, use an ISB instruction immediately after the code modification in the program. This ensures subsequent instruction execution uses the updated program.

Memory map switching — If the system contains a memory map switching mechanism, use a DSB instruction after switching the memory map. This ensures subsequent instruction execution uses the updated memory map.

Memory accesses to Strongly-ordered memory, such as the System Control Block, do not require the use of DMB instructions.


The processor preserves transaction order relative to all other transactions.

25.3.2.5 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Section 25–25.3.2.5.1 describes how words of data are stored in memory.

25.3.2.5.1 Little-endian format

In little-endian format, the processor stores the **least significant byte** (Isbyte) of a word at the lowest-numbered byte, and the **most significant byte** (msbyte) at the highest-numbered byte. For example:

25.3.3 Exception model

This section describes the exception model.

25.3.3.1 Exception states

Each exception is in one of the following states:

Inactive — The exception is not active and not pending.

Pending — The exception is waiting to be serviced by the processor.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

Active — An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in the active state.

Active and pending — The exception is being serviced by the processor and there is a pending exception from the same source.

25.3.3.2 Exception types

The exception types are:

Reset — Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts in Thread mode.

NMI — A **NonMaskable Interrupt** (NMI) can be triggered by software. This is the highest priority exception other than reset. It is permanently enabled and has a fixed priority of -2. NMIs cannot be:

- masked or prevented from activation by any other exception
- preempted by any exception other than Reset.

HardFault — A HardFault is an exception that occurs because of an error during normal or exception processing. HardFaults have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority.

SVCall — A **supervisor call** (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instructions to access OS kernel functions and device drivers.

PendSV — PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other exception is active.

SysTick — A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ) — An interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

Table 294. Properties of different exception types

Exception number [1]	IRQ number[1]	Exception type	Priority	Vector address ^[2]
1	-	Reset	-3, the highest	0x0000004
2	-14	NMI	-2	0x00000008
3	-13	HardFault	-1	0x000000C
4-10	-	Reserved	-	-
11	-5	SVCall	Configurable[3]	0x000002C
12-13	-	Reserved	-	-

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 294. Properties of different exception types

Exception number [1]	IRQ number ^[1]	Exception type	Priority	Vector address ^[2]
14	-2	PendSV	Configurable 3	0x0000038
15	-1	SysTick	Configurable [3]	0x000003C
16 and above	0 and above	Interrupt (IRQ)	Configurable [3]	0x00000040 and above[4]

^[1] To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other than interrupts. The IPSR returns the Exception number, see Table 25–289.

For an asynchronous exception, other than reset, the processor can execute additional instructions between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that <u>Table 25–294</u> shows as having configurable priority, see <u>Section 25–25.5.2.3</u>.

For more information about HardFaults, see Section 25–25.3.4.

25.3.3.3 Exception handlers

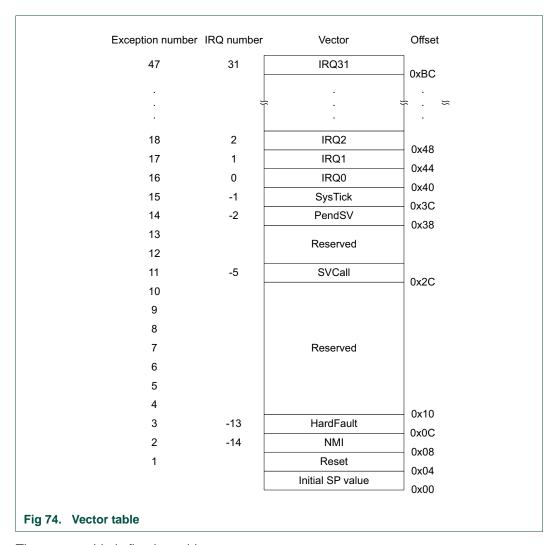
The processor handles exceptions using:

Interrupt Service Routines (ISRs) — Interrupts IRQ0 to IRQ31 are the exceptions handled by ISRs.

Fault handler — HardFault is the only exception handled by the fault handler.

System handlers — NMI, PendSV, SVCall SysTick, and HardFault are all system exceptions handled by system handlers.

25.3.3.4 Vector table


The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for all exception handlers. Figure 25–74 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is written in Thumb code.

^[2] See Section 25.3.3.4 for more information.

^[3] See Section 25-25.5.2.6.

^[4] Increasing in steps of 4.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

The vector table is fixed at address 0x00000000.

25.3.3.5 Exception priorities

As Table 25–294 shows, all exceptions have an associated priority, with:

- a lower priority value indicating a higher priority
- configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities see

- Section 25–25.5.3.7
- Section 25–25.5.2.6.

Remark: Configurable priority values are in the range 0-3. The Reset, HardFault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

25.3.3.6 Exception entry and return

Descriptions of exception handling use the following terms:

Preemption — When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled.

When one exception preempts another, the exceptions are called nested exceptions. See Section 25–25.3.3.6.1 for more information.

Return — This occurs when the exception handler is completed, and:

- there is no pending exception with sufficient priority to be serviced
- the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See <u>Section 25–25.3.3.6.2</u> for more information.

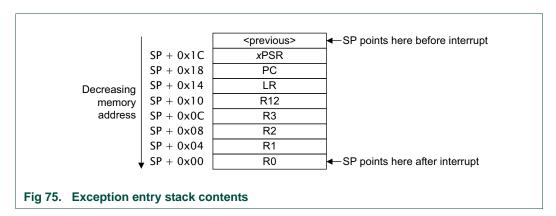
Tail-chaining — This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.

Late-arriving — This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved would be the same for both exceptions. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

25.3.3.6.1 Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:

- the processor is in Thread mode
- the new exception is of higher priority than the exception being handled, in which case the new exception preempts the exception being handled.


When one exception preempts another, the exceptions are nested.

User manual

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Sufficient priority means the exception has greater priority than any limit set by the mask register, see <u>Section 25–25.3.1.3.6</u>. An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred to as **stacking** and the structure of eight data words is referred as a **stack frame**. The stack frame contains the following information:

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The stack frame is aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the exception handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

25.3.3.6.2 Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the following instructions attempts to set the PC to an EXC_RETURN value:

- a POP instruction that loads the PC
- a BX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on this value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN value are <code>0xffffffff</code>. When the processor loads a value matching this pattern to the PC it detects that the operation is a

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

not a normal branch operation and, instead, that the exception is complete. Therefore, it starts the exception return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor mode, as Table 25–295 shows.

Table 295. Exception return behavior

EXC_RETURN	Description
0xFFFFFFF1	Return to Handler mode.
	Exception return gets state from the main stack.
	Execution uses MSP after return.
0xFFFFFFF9	Return to Thread mode.
	Exception return gets state from MSP.
	Execution uses MSP after return.
0xFFFFFFFD	Return to Thread mode.
	Exception return gets state from PSP.
	Execution uses PSP after return.
All other values	Reserved.

25.3.4 Fault handling

Faults are a subset of exceptions, see <u>Section 25–25.3.3</u>. All faults result in the HardFault exception being taken or cause lockup if they occur in the NMI or HardFault handler. The faults are:

- execution of an SVC instruction at a priority equal or higher than SVCall
- execution of a BKPT instruction without a debugger attached
- a system-generated bus error on a load or store
- execution of an instruction from an XN memory address
- · execution of an instruction from a location for which the system generates a bus fault
- a system-generated bus error on a vector fetch
- execution of an Undefined instruction
- execution of an instruction when not in Thumb-State as a result of the T-bit being previously cleared to 0
- an attempted load or store to an unaligned address.

Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can preempt any exception other than Reset, NMI, or another hard fault.

25.3.4.1 Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers, or if the system generates a bus error when unstacking the PSR on an exception return using the MSP. When the processor is in lockup state it does not execute any instructions. The processor remains in lockup state until one of the following occurs:

- · it is reset
- a debugger halts it
- an NMI occurs and the current lockup is in the HardFault handler.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

If lockup state occurs in the NMI handler a subsequent NMI does not cause the processor to leave lockup state.

25.3.5 Power management

The Cortex-M0 processor sleep modes reduce power consumption:

- a sleep mode, that stops the processor clock
- a deep-sleep mode. The deep-sleep mode is not implemented on the LPC11Axx.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see Section 25–25.5.3.5.

This section describes the mechanisms for entering sleep mode and the conditions for waking up from sleep mode.

25.3.5.1 Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore software must be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back in to sleep mode.

25.3.5.1.1 Wait for interrupt

The Wait For Interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI instruction it stops executing instructions and enters sleep mode. See Section 25–25.4.7.12 for more information.

25.3.5.1.2 Wait for event

Remark: The WFE instruction is not implemented on the LPC11Axx.

The Wait For Event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event register. When the processor executes a WFE instruction, it checks the value of the event register:

- **0** The processor stops executing instructions and enters sleep mode
- **1** The processor sets the register to zero and continues executing instructions without entering sleep mode.

See Section 25–25.4.7.11 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on execution of a WFE instruction. Typically, this is because of the assertion of an external event, or because another processor in the system has executed a SEV instruction, see Section 25–25.4.7.9. Software cannot access this register directly.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.3.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of an exception handler and returns to Thread mode it immediately enters sleep mode. Use this mechanism in applications that only require the processor to run when an interrupt occurs.

25.3.5.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that caused it to enter sleep mode.

25.3.5.2.1 Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK, see Section 25–25.3.1.3.6.

25.3.5.2.2 Wakeup from WFE

Remark: The WFE instruction is not implemented on the LPC11Axx.

The processor wakes up if:

- it detects an exception with sufficient priority to cause exception entry
- in a multiprocessor system, another processor in the system executes a SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more information about the SCR see Section 25–25.5.3.5.

25.3.5.3 Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides the following intrinsic functions for these instructions:

```
void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt
void __SEV(void) // Send Event
```

25.4 Instruction set

25.4.1 Instruction set summary

The processor implements a version of the Thumb instruction set. <u>Table 296</u> lists the supported instructions.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Remark: In Table 296

- angle brackets, <>, enclose alternative forms of the operand
- braces, {}, enclose optional operands and mnemonic parts
- the Operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

Table 296. Cortex-M0 instructions

Mnemonic	Operands	Brief description	Flags	Reference
ADCS	{Rd,} Rn, Rm	Add with Carry	N,Z,C,V	Section 25–25.4.5 .1
ADD{S}	{Rd,} Rn, <rm #imm></rm #imm>	Add	N,Z,C,V	Section 25–25.4.5 .1
ADR	Rd, label	PC-relative Address to Register	-	Section 25–25.4.4 .1
ANDS	{Rd,} Rn, Rm	Bitwise AND	N,Z	Section 25–25.4.5 .1
ASRS	{Rd,} Rm, <rs #imm></rs #imm>	Arithmetic Shift Right	N,Z,C	Section 25–25.4.5 .3
B{cc}	label	Branch {conditionally}	-	Section 25–25.4.6 .1
BICS	{Rd,} Rn, Rm	Bit Clear	N,Z	Section 25–25.4.5 .2
BKPT	#imm	Breakpoint	-	Section 25–25.4.7 .1
BL	label	Branch with Link	-	Section 25–25.4.6 .1
BLX	Rm	Branch indirect with Link	-	Section 25–25.4.6 .1
ВХ	Rm	Branch indirect	-	Section 25–25.4.6 .1
CMN	Rn, Rm	Compare Negative	N,Z,C,V	Section 25–25.4.5 .4
CMP	Rn, <rm #imm></rm #imm>	Compare	N,Z,C,V	Section 25–25.4.5 .4
CPSID	i	Change Processor State, Disable Interrupts	-	Section 25–25.4.7 .2
CPSIE	i	Change Processor State, Enable Interrupts	-	Section 25–25.4.7 .2
DMB	-	Data Memory Barrier	-	Section 25–25.4.7 .3
DSB	-	Data Synchronization Barrier	-	Section 25–25.4.7 .4
EORS	{Rd,} Rn, Rm	Exclusive OR	N,Z	Section 25–25.4.5 .2
ISB	-	Instruction Synchronization Barrier	-	Section 25–25.4.7 .5
LDM	Rn{!}, reglist	Load Multiple registers, increment after	-	Section 25–25.4.4 .5
	All information provided in this do	cument is subject to legal disclaimers.		© NXP B.V. 2013. All rights reserved

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 296. Cortex-M0 instructions

Table 250. Cortex-wo mistractions				
Mnemonic	Operands	Brief description	Flags	Reference
LDR	Rt, label	Load Register from PC-relative address	-	Section 25–25.4.4
LDR	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with word	-	Section 25–25.4.4
LDRB	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with byte	-	Section 25-25.4.4
LDRH	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with halfword	-	Section 25–25.4.4
LDRSB	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with signed byte	-	Section 25–25.4.4
LDRSH	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with signed halfword	-	Section 25–25.4.4
LSLS	{Rd,} Rn, <rs #imm></rs #imm>	Logical Shift Left	N,Z,C	Section 25–25.4.5 .3
U	{Rd,} Rn, <rs #imm></rs #imm>	Logical Shift Right	N,Z,C	Section 25–25.4.5 .3
MOV{S}	Rd, Rm	Move	N,Z	Section 25–25.4.5 . <u>5</u>
MRS	Rd, spec_reg	Move to general register from special register	-	Section 25–25.4.7 .6
MSR	spec_reg, Rm	Move to special register from general register	N,Z,C,V	Section 25–25.4.7 .7
MULS	Rd, Rn, Rm	Multiply, 32-bit result	N,Z	Section 25–25.4.5 .6
MVNS	Rd, Rm	Bitwise NOT	N,Z	Section 25–25.4.5 .5
NOP	-	No Operation	-	Section 25–25.4.7 .8
ORRS	{Rd,} Rn, Rm	Logical OR	N,Z	Section 25–25.4.5 .2
POP	reglist	Pop registers from stack	-	Section 25–25.4.4 .6
PUSH	reglist	Push registers onto stack	-	Section 25–25.4.4 .6
REV	Rd, Rm	Byte-Reverse word	-	Section 25–25.4.5 .7
REV16	Rd, Rm	Byte-Reverse packed halfwords	-	Section 25–25.4.5 .7
REVSH	Rd, Rm	Byte-Reverse signed halfword	-	Section 25–25.4.5 .7
RORS	{Rd,} Rn, Rs	Rotate Right	N,Z,C	Section 25–25.4.5 .3
RSBS	{Rd,} Rn, #0	Reverse Subtract	N,Z,C,V	Section 25–25.4.5 .1
SBCS	{Rd,} Rn, Rm	Subtract with Carry	N,Z,C,V	Section 25–25.4.5 .1
SEV	-	Send Event	-	Section 25–25.4.7 .9
STM	Rn!, reglist	Store Multiple registers, increment after	-	Section 25–25.4.4 .5

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 296. Cortex-M0 instructions

Mnemonic	Operands	Brief description	Flags	Reference
STR	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as word	-	Section 25–25.4.4
STRB	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as byte	-	Section 25–25.4.4
STRH	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as halfword	-	Section 25–25.4.4
SUB{S}	{Rd,} Rn, <rm #imm></rm #imm>	Subtract	N,Z,C,V	Section 25–25.4.5 .1
SVC	#imm	Supervisor Call	-	Section 25–25.4.7 .10
SXTB	Rd, Rm	Sign extend byte	-	Section 25–25.4.5 <u>.8</u>
SXTH	Rd, Rm	Sign extend halfword	-	Section 25–25.4.5 .8
TST	Rn, Rm	Logical AND based test	N,Z	Section 25–25.4.5 <u>.9</u>
UXTB	Rd, Rm	Zero extend a byte	-	Section 25–25.4.5 .8
UXTH	Rd, Rm	Zero extend a halfword	-	Section 25–25.4.5 .8
WFE	-	Wait For Event	-	Section 25–25.4.7 .11
WFI	-	Wait For Interrupt	-	Section 25–25.4.7 .12

25.4.2 Intrinsic functions

ISO/IEC C code cannot directly access some Cortex-M0 instructions. This section describes intrinsic functions that can generate these instructions, provided by the CMSIS and that might be provided by a C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to use inline assembler to access the relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 297. CMSIS intrinsic functions to generate some Cortex-M0 instructions

Instruction	CMSIS intrinsic function
CPSIE i	voidenable_irq(void)
CPSID i	voiddisable_irq(void)
ISB	voidISB(void)
DSB	voidDSB(void)
DMB	voidDMB(void)
NOP	voidNOP(void)
REV	uint32_tREV(uint32_t int value)
REV16	uint32_tREV16(uint32_t int value)
REVSH	uint32_tREVSH(uint32_t int value)

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 297. CMSIS intrinsic functions to generate some Cortex-M0 instructions

Instruction	CMSIS intrinsic function
SEV	voidSEV(void)
WFE	voidWFE(void)
WFI	voidWFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 298. Intrinsic functions for accessing special registers via MRS/MSR

Special register	Access	CMSIS function
PRIMASK	Read	uint32_tget_PRIMASK (void)
	Write	voidset_PRIMASK (uint32_t value)
CONTROL	Read	uint32_tget_CONTROL (void)
	Write	voidset_CONTROL (uint32_t value)
MSP	Read	uint32_tget_MSP (void)
	Write	voidset_MSP (uint32_t TopOfMainStack)
PSP	Read	uint32_tget_PSP (void)
	Write	voidset_PSP (uint32_t TopOfProcStack)

25.4.3 About the instruction descriptions

The following sections give more information about using the instructions:

- Section 25.4.3.1 "Operands"
- Section 25.4.3.2 "Restrictions when using PC or SP"
- Section 25.4.3.3 "Shift Operations"
- Section 25.4.3.4 "Address alignment"
- Section 25.4.3.5 "PC-relative expressions"
- Section 25.4.3.6 "Conditional execution".

25.4.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the operands and often store the result in a destination register. When there is a destination register in the instruction, it is usually specified before the other operands.

25.4.3.2 Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether you can use, the **Program Counter** (PC) or **Stack Pointer** (SP) for the operands or destination register. See instruction descriptions for more information.

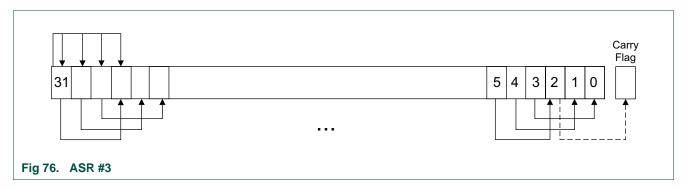
Remark: When you update the PC with a BX, BLX, or POP instruction, bit[0] of any address must be 1 for correct execution. This is because this bit indicates the destination instruction set, and the Cortex-M0 processor only supports Thumb instructions. When a BL or BLX instruction writes the value of bit[0] into the LR it is automatically assigned the value 1.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.3.3 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the **shift length**. Register shift can be performed directly by the instructions ASR, LSR, LSL, and ROR and the result is written to a destination register. The permitted shift lengths depend on the shift type and the instruction, see the individual instruction description. If the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified shift length is 0. The following sub-sections describe the various shift operations and how they affect the carry flag. In these descriptions, *Rm* is the register containing the value to be shifted, and *n* is the shift length.

25.4.3.3.1 ASR


Arithmetic shift right by n bits moves the left-hand 32 -n bits of the register Rm, to the right by n places, into the right-hand 32 -n bits of the result, and it copies the original bit[31] of the register into the leftmost n bits of the result. See Figure 25–76.

You can use the ASR operation to divide the signed value in the register Rm by 2^n , with the result being rounded towards negative-infinity.

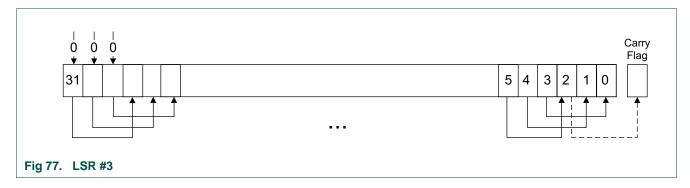
When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[*n*-1], of the register *Rm*.

Remark:

- If *n* is 32 or more, then all the bits in the result are set to the value of bit[31] of *Rm*.
- If *n* is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of *Rm*.

25.4.3.3.2 LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32 -n bits of the result, and it sets the leftmost n bits of the result to 0. See Figure 77.


You can use the LSR operation to divide the value in the register Rm by 2^n , if the value is regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[*n*-1], of the register *Rm*.

Remark:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

- If *n* is 32 or more, then all the bits in the result are cleared to 0.
- If *n* is 33 or more and the carry flag is updated, it is updated to 0.

25.4.3.3.3 LSL


Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n bits of the result, and it sets the rightmost n bits of the result to 0. See Figure 78.

You can use the LSL operation to multiply the value in the register *Rm* by 2ⁿ, if the value is regarded as an unsigned integer or a two's complement signed integer. Overflow can occur without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-*n*], of the register *Rm*. These instructions do not affect the carry flag when used with LSL #0.

Remark:

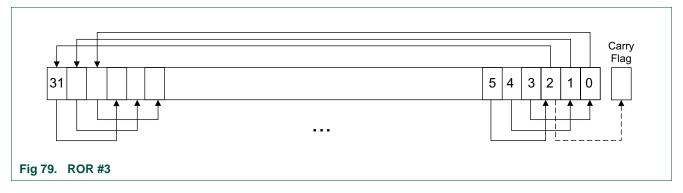
- If *n* is 32 or more, then all the bits in the result are cleared to 0.
- If *n* is 33 or more and the carry flag is updated, it is updated to 0.

25.4.3.3.4 ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the result, and it moves the rightmost n bits of the register into the leftmost n bits of the result. See Figure 25–79.

When the instruction is RORS the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

Remark:


Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

- If *n* is 32, then the value of the result is same as the value in *Rm*, and if the carry flag is updated, it is updated to bit[31] of *Rm*.
- ROR

with shift length, n, greater than 32 is the same as

ROR

with shift length n-32.

25.4.3.4 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, or multiple word access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

There is no support for unaligned accesses on the Cortex-M0 processor. Any attempt to perform an unaligned memory access operation results in a HardFault exception.

25.4.3.5 PC-relative expressions

A PC-relative expression or **label** is a symbol that represents the address of an instruction or literal data. It is represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the label and the address of the current instruction. If the offset is too big, the assembler produces an error.

Remark:

- For most instructions, the value of the PC is the address of the current instruction plus 4 bytes.
- Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number, or an expression of the form [PC, #imm].

25.4.3.6 Conditional execution

Most data processing instructions update the condition flags in the **Application Program Status Register** (APSR) according to the result of the operation, see <u>Section</u>. Some instructions update all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction descriptions for the flags they affect.

You can execute a conditional branch instruction, based on the condition flags set in another instruction, either:

- · immediately after the instruction that updated the flags
- after any number of intervening instructions that have not updated the flags.

UM10527

User manual

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

On the Cortex-M0 processor, conditional execution is available by using conditional branches.

This section describes:

- Section 25.4.3.6.1 "The condition flags"
- Section 25.4.3.6.2 "Condition code suffixes".

25.4.3.6.1 The condition flags

The APSR contains the following condition flags:

- **N** Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
- **Z** Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
- **C** Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
- **V** Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see Section 25–25.3.1.3.5.

A carry occurs:

- if the result of an addition is greater than or equal to 2³²
- if the result of a subtraction is positive or zero
- as the result of a shift or rotate instruction.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation been performed at infinite precision, for example:

- if adding two negative values results in a positive value
- if adding two positive values results in a negative value
- if subtracting a positive value from a negative value generates a positive value
- if subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded. See the instruction descriptions for more information.

25.4.3.6.2 Condition code suffixes

Conditional branch is shown in syntax descriptions as B{cond}. A branch instruction with a condition code is only taken if the condition code flags in the APSR meet the specified condition, otherwise the branch instruction is ignored. shows the condition codes to use.

<u>Table 299</u> also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 299. Condition code suffixes

Suffix	Flags	Meaning
EQ	Z = 1	Equal, last flag setting result was zero
NE	Z = 0	Not equal, last flag setting result was non-zero
CS or HS	C = 1	Higher or same, unsigned
CC or LO	C = 0	Lower, unsigned
MI	N = 1	Negative

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 299. Condition code suffixes

Suffix	Flags	Meaning
PL	N = 0	Positive or zero
VS	V = 1	Overflow
VC	V = 0	No overflow
HI	C = 1 and Z = 0	Higher, unsigned
LS	C = 0 or Z = 1	Lower or same, unsigned
GE	N = V	Greater than or equal, signed
LT	N != V	Less than, signed
GT	Z = 0 and $N = V$	Greater than, signed
LE	Z = 1 and N != V	Less than or equal, signed
AL	Can have any value	Always. This is the default when no suffix is specified.

25.4.4 Memory access instructions

Table 300 shows the memory access instructions:

Table 300. Access instructions

Mnemonic	Brief description	See
LDR{type}	Load Register using register offset	Section 25–25.4.4. 3
LDR	Load Register from PC-relative address	Section 25–25.4.4. <u>4</u>
POP	Pop registers from stack	Section 25–25.4.4. <u>6</u>
PUSH	Push registers onto stack	Section 25–25.4.4.
STM	Store Multiple registers	Section 25–25.4.4. <u>5</u>
STR{type}	Store Register using immediate offset	Section 25–25.4.4. 2
STR{type}	Store Register using register offset	Section 25–25.4.4. 3

25.4.4.1 ADR

Generates a PC-relative address.

25.4.4.1.1 Syntax

ADR Rd, label

where:

Rd is the destination register.

label is a PC-relative expression. See Section 25–25.4.3.5.

25.4.4.1.2 Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the destination register.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

ADR facilitates the generation of position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address you generate is set to 1 for correct execution.

25.4.4.1.3 Restrictions

In this instruction *Rd* must specify R0-R7. The data-value addressed must be word aligned and within 1020 bytes of the current PC.

25.4.4.1.4 Condition flags

This instruction does not change the flags.

25.4.4.1.5 Examples

```
ADR R1, TextMessage ; Write address value of a location labelled as ; TextMessage to R1

ADR R3, [PC,#996] ; Set R3 to value of PC + 996.
```

25.4.4.2 LDR and STR, immediate offset

Load and Store with immediate offset.

25.4.4.2.1 Syntax

```
LDR Rt, [<Rn | SP> {, #imm}]

LDR<B|H> Rt, [Rn {, #imm}]

STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]
```

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.

imm is an offset from Rn. If imm is omitted, it is assumed to be zero.

25.4.4.2.2 Operation

LDR, LDRB and LDRH instructions load the register specified by *Rt* with either a word, byte or halfword data value from memory. Sizes less than word are zero extended to 32-bits before being written to the register specified by *Rt*.

STR, STRB and STRH instructions store the word, least-significant byte or lower halfword contained in the single register specified by *Rt* in to memory. The memory address to load from or store to is the sum of the value in the register specified by either *Rn* or SP and the immediate value *imm*.

25.4.4.2.3 Restrictions

In these instructions:

• Rt and Rn must only specify R0-R7.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

- *imm* must be between:
 - 0 and 1020 and an integer multiple of four for LDR and STR using SP as the base register
 - 0 and 124 and an integer multiple of four for LDR and STR using R0-R7 as the base register
 - 0 and 62 and an integer multiple of two for LDRH and STRH
 - 0 and 31 for LDRB and STRB.
- The computed address must be divisible by the number of bytes in the transaction, see Section 25–25.4.3.4.

25.4.4.2.4 Condition flags

These instructions do not change the flags.

25.4.4.2.5 Examples

```
LDR R4, [R7 ; Loads R4 from the address in R7. STR R2, [R0,\#const-struc] ; const-struc is an expression evaluating ; to a constant in the range 0-1020.
```

25.4.4.3 LDR and STR, register offset

Load and Store with register offset.

25.4.4.3.1 Syntax

```
LDR Rt, [Rn, Rm]
```

LDR<B|H> Rt, [Rn, Rm]

LDR<SB|SH> Rt, [Rn, Rm]

STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

25.4.4.3.2 Operation

LDR, LDRB, U, LDRSB and LDRSH load the register specified by *Rt* with either a word, zero extended byte, zero extended halfword, sign extended byte or sign extended halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in the single register specified by *Rt* into memory.

The memory address to load from or store to is the sum of the values in the registers specified by *Rn* and *Rm*.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.4.3.3 Restrictions

In these instructions:

- Rt, Rn, and Rm must only specify R0-R7.
- the computed memory address must be divisible by the number of bytes in the load or store, see Section 25–25.4.3.4.

25.4.4.3.4 Condition flags

These instructions do not change the flags.

25.4.4.3.5 Examples

```
STR R0, [R5, R1] ; Store value of R0 into an address equal to ; sum of R5 and R1

LDRSH R1, [R2, R3] ; Load a halfword from the memory address ; specified by (R2 + R3), sign extend to 32-bits ; and write to R1.
```

25.4.4.4 LDR, PC-relative

Load register (literal) from memory.

25.4.4.4.1 Syntax

LDR Rt, label

where:

Rt is the register to load.

label is a PC-relative expression. See Section 25–25.4.3.5.

25.4.4.4.2 Operation

Loads the register specified by Rt from the word in memory specified by label.

25.4.4.4.3 Restrictions

In these instructions, label must be within 1020 bytes of the current PC and word aligned.

25.4.4.4.4 Condition flags

These instructions do not change the flags.

25.4.4.4.5 Examples

```
LDR R0, LookUpTable ; Load R0 with a word of data from an address ; labelled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).
```

25.4.4.5 LDM and STM

Load and Store Multiple registers.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.4.5.1 Syntax

LDM Rn{!}, reglist

STM Rn!, reglist

where:

Rn is the register on which the memory addresses are based.

! writeback suffix.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than one register or register range, see Section 25–25.4.4.5.5.

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being Incremented After each access. LDMFD refers to its use for popping data from Full Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being Incremented After each access. STMEA refers to its use for pushing data onto Empty Ascending stacks.

25.4.4.5.2 Operation

LDM instructions load the registers in *reglist* with word values from memory addresses based on *Rn*.

STM instructions store the word values in the registers in *reglist* to memory addresses based on *Rn*.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value in the register specified by Rn to the value in the register specified by Rn + 4*(n-1), where n is the number of registers in *reglist*. The accesses happens in order of increasing register numbers, with the lowest numbered register using the lowest memory address and the highest number register using the highest memory address. If the writeback suffix is specified, the value in the register specified by Rn + 4*n is written back to the register specified by Rn.

25.4.4.5.3 Restrictions

In these instructions:

- reglist and Rn are limited to R0-R7.
- the writeback suffix must always be used unless the instruction is an LDM where reglist also contains Rn, in which case the writeback suffix must not be used.
- the value in the register specified by Rn must be word aligned. See Section 25–25.4.3.4 for more information.
- for STM, if Rn appears in reglist, then it must be the first register in the list.

25.4.4.5.4 Condition flags

These instructions do not change the flags.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.4.5.5 Examples

```
LDM R0,\{R0,R3,R4\}; LDMIA is a synonym for LDM STMIA R1!,\{R2-R4,R6\}
```

25.4.4.5.6 Incorrect examples

```
STM R5!,\{R4,R5,R6\}; Value stored for R5 is unpredictable LDM R2,\{\}; There must be at least one register in the list
```

25.4.4.6 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

25.4.4.6.1 Syntax

PUSH reglist

POP reglist

where:

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than one register or register range.

25.4.4.6.2 Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address,

POP uses the value in the SP register as the lowest memory address, implementing a full-descending stack. On completion,

PUSH updates the SP register to point to the location of the lowest store value,

POP updates the SP register to point to the location above the highest location loaded.

If a POP instruction includes PC in its *reglist*, a branch to this location is performed when the POP instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure correct operation.

25.4.4.6.3 Restrictions

In these instructions:

- reglist must use only R0-R7.
- The exception is LR for a PUSH and PC for a POP.

25.4.4.6.4 Condition flags

These instructions do not change the flags.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.4.6.5 Examples

```
PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to
; the new PC.
```

25.4.5 General data processing instructions

Table 301 shows the data processing instructions:

Table 301. Data processing instructions

Mnemonic	Brief description	See
ADCS	Add with Carry	Section 25–25.4.5.1
ADD{S}	Add	Section 25–25.4.5.1
ANDS	Logical AND	Section 25–25.4.5.2
ASRS	Arithmetic Shift Right	Section 25–25.4.5.3
BICS	Bit Clear	Section 25–25.4.5.2
CMN	Compare Negative	Section 25–25.4.5.4
CMP	Compare	Section 25–25.4.5.4
EORS	Exclusive OR	Section 25–25.4.5.2
LSLS	Logical Shift Left	Section 25–25.4.5.3
LSRS	Logical Shift Right	Section 25–25.4.5.3
MOV{S}	Move	Section 25–25.4.5.5
MULS	Multiply	Section 25–25.4.5.6
MVNS	Move NOT	Section 25–25.4.5.5
ORRS	Logical OR	Section 25–25.4.5.2
REV	Reverse byte order in a word	Section 25–25.4.5.7
REV16	Reverse byte order in each halfword	Section 25–25.4.5.7
REVSH	Reverse byte order in bottom halfword and sign extend	Section 25–25.4.5.7
RORS	Rotate Right	Section 25–25.4.5.3
RSBS	Reverse Subtract	Section 25–25.4.5.1
SBCS	Subtract with Carry	Section 25–25.4.5.1
SUBS	Subtract	Section 25–25.4.5.1
SXTB	Sign extend a byte	Section 25–25.4.5.8
SXTH	Sign extend a halfword	Section 25–25.4.5.8
UXTB	Zero extend a byte	Section 25–25.4.5.8
UXTH	Zero extend a halfword	Section 25–25.4.5.8
TST	Test	Section 25–25.4.5.9

25.4.5.1 ADC, ADD, RSB, SBC, and SUB

Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

25.4.5.1.1 Syntax

ADCS {Rd,} Rn, Rm

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

 $ADD{S} {Rd,} Rn, < Rm | \#imm >$

RSBS {Rd,} Rn, Rm, #0

SBCS {Rd,} Rn, Rm

SUB{S} {Rd,} Rn,

< Rm | #imm >

Where:

S causes an ADD or SUB instruction to update flags

Rd specifies the result register

Rn specifies the first source register

Rm specifies the second source register

imm specifies a constant immediate value.

When the optional *Rd* register specifier is omitted, it is assumed to take the same value as *Rn*, for example ADDS R1,R2 is identical to ADDS R1,R1,R2.

25.4.5.1.2 Operation

The ADCS instruction adds the value in *Rn* to the value in *Rm*, adding a further one if the carry flag is set, places the result in the register specified by *Rd* and updates the N, Z, C, and V flags.

The ADD instruction adds the value in *Rn* to the value in *Rm* or an immediate value specified by *imm* and places the result in the register specified by *Rd*.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C and V flags.

The RSBS instruction subtracts the value in *Rn* from zero, producing the arithmetic negative of the value, and places the result in the register specified by Rd and updates the N, Z, C and V flags.

The SBCS instruction subtracts the value of *Rm* from the value in *Rn*, deducts a further one if the carry flag is set. It places the result in the register specified by Rd and updates the N, Z, C and V flags.

The SUB instruction subtracts the value in *Rm* or the immediate specified by *imm*. It places the result in the register specified by *Rd*.

The SUBS instruction performs the same operation as SUB and also updates the N, Z, C and V flags.

Use ADC and SBC to synthesize multiword arithmetic, see Section 25.4.5.1.4.

See also Section 25-25.4.4.1.

25.4.5.1.3 Restrictions

<u>Table 302</u> lists the legal combinations of register specifiers and immediate values that can be used with each instruction.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 302.	ADC, ADD	, RSB	SBC and SUB	operand restrictions

Instruction	Rd	Rn	Rm	imm	Restrictions
ADCS	R0-R7	R0-R7	R0-R7	-	Rd and Rn must specify the same register.
ADD	R0-R15	R0-R15	R0-PC	-	Rd and Rn must specify the same register.
					Rn and Rm must not both specify PC.
	R0-R7	SP or PC	-	0-1020	Immediate value must be an integer multiple of four.
	SP	SP	-	0-508	Immediate value must be an integer multiple of four.
ADDS	R0-R7	R0-R7	-	0-7	-
	R0-R7	R0-R7	-	0-255	Rd and Rn must specify the same register.
	R0-R7	R0-R7	R0-R7	-	•
RSBS	R0-R7	R0-R7	-	-	-
SBCS	R0-R7	R0-R7	R0-R7	-	Rd and Rn must specify the same register.
SUB	SP	SP	-	0-508	Immediate value must be an integer multiple of four.
SUBS	R0-R7	R0-R7	-	0-7	-
	R0-R7	R0-R7	-	0-255	Rd and Rn must specify the same register.
	R0-R7	R0-R7	R0-R7	-	-

25.4.5.1.4 Examples

The following shows two instructions that add a 64-bit integer contained in R0 and R1 to another 64-bit integer contained in R2 and R3, and place the result in R0 and R1.

64-bit addition:

```
ADDS R0, R0, R2 ; add the least significant words ADCS R1, R1, R3 ; add the most significant words with carry
```

Multiword values do not have to use consecutive registers. The following shows instructions that subtract a 96-bit integer contained in R1, R2, and R3 from another contained in R4, R5, and R6. The example stores the result in R4, R5, and R6.

96-bit subtraction:

```
SUBS R4, R4, R1 ; subtract the least significant words

SBCS R5, R5, R2 ; subtract the middle words with carry

SBCS R6, R6, R3 ; subtract the most significant words with carry
```

The following shows the RSBS instruction used to perform a 1's complement of a single register.

Arithmetic negation: RSBS R7, R7, #0 ; subtract R7 from zero

25.4.5.2 AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR, and Bit Clear.

25.4.5.2.1 Syntax

ANDS {Rd,} Rn, Rm

ORRS {Rd,} Rn, Rm

EORS {Rd,} Rn, Rm

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

BICS {Rd,} Rn, Rm

where:

Rd is the destination register.

Rn is the register holding the first operand and is the same as the destination register.

Rm second register.

25.4.5.2.2 Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive OR operations on the values in *Rn* and *Rm*.

The BIC instruction performs an AND operation on the bits in *Rn* with the logical negation of the corresponding bits in the value of *Rm*.

The condition code flags are updated on the result of the operation, see Section 25.4.3.6.1.

25.4.5.2.3 Restrictions

In these instructions, Rd, Rn, and Rm must only specify R0-R7.

25.4.5.2.4 Condition flags

These instructions:

- update the N and Z flags according to the result
- do not affect the C or V flag.

25.4.5.2.5 Examples

```
ANDS R2, R2, R1

ORRS R2, R2, R5

ANDS R5, R5, R8

EORS R7, R7, R6

BICS R0, R0, R1
```

25.4.5.3 ASR, LSL, LSR, and ROR

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

25.4.5.3.1 Syntax

```
ASRS {Rd,} Rm, Rs
ASRS {Rd,} Rm, #imm
LSLS {Rd,} Rm, #imm
LSLS {Rd,} Rm, #imm
LSRS {Rd,} Rm, #imm
LSRS {Rd,} Rm, Rs
LSRS {Rd,} Rm, Rs
LSRS {Rd,} Rm, Rs
```

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

where:

Rd is the destination register. If *Rd* is omitted, it is assumed to take the same value as *Rm*.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm.

imm is the shift length.

The range of shift length depends on the instruction:

```
ASR — shift length from 1 to 32
```

LSL — shift length from 0 to 31

LSR — shift length from 1 to 32.

Remark: MOVS Rd, *Rm* is a pseudonym for LSLS Rd, *Rm*, #0.

25.4.5.3.2 Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-right or a right-rotation of the bits in the register *Rm* by the number of places specified by the immediate *imm* or the value in the least-significant byte of the register specified by *Rs*.

For details on what result is generated by the different instructions, see Section 25–25.4.3.3.

25.4.5.3.3 Restrictions

In these instructions, *Rd*, *Rm*, and *Rs* must only specify R0-R7. For non-immediate instructions, *Rd* and *Rm* must specify the same register.

25.4.5.3.4 Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see Section 25–25.4.3.3. The V flag is left unmodified.

25.4.5.3.5 Examples

```
ASRS R7, R5, #9 ; Arithmetic shift right by 9 bits

LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update

LSRS R4, R5, #6 ; Logical shift right by 6 bits

RORS R4, R4, R6 ; Rotate right by the value in the bottom byte of R6.
```

25.4.5.4 CMP and CMN

Compare and Compare Negative.

25.4.5.4.1 Syntax

CMN Rn, Rm

CMP Rn, #imm

CMP Rn, Rm

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

where:

Rn is the register holding the first operand.

Rm is the register to compare with.

imm is the immediate value to compare with.

25.4.5.4.2 Operation

These instructions compare the value in a register with either the value in another register or an immediate value. They update the condition flags on the result, but do not write the result to a register.

The CMP instruction subtracts either the value in the register specified by *Rm*, or the immediate *imm* from the value in *Rn* and updates the flags. This is the same as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of *Rm* to the value in *Rn* and updates the flags. This is the same as an ADDS instruction, except that the result is discarded.

25.4.5.4.3 Restrictions

For the:

• CMN

instruction Rn, and Rm must only specify R0-R7.

- CMP instruction:
 - Rn and Rm can specify R0-R14
 - immediate must be in the range 0-255.

25.4.5.4.4 Condition flags

These instructions update the N, Z, C and V flags according to the result.

25.4.5.4.5 Examples

25.4.5.5 MOV and MVN

Move and Move NOT.

25.4.5.5.1 Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see Section 25–25.4.3.6.

Rd is the destination register.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Rm is a register.

imm is any value in the range 0-255.

25.4.5.5.2 Operation

The MOV instruction copies the value of Rm into Rd.

The MOVS instruction performs the same operation as the MOV instruction, but also updates the N and Z flags.

The MVNS instruction takes the value of *Rm*, performs a bitwise logical negate operation on the value, and places the result into *Rd*.

25.4.5.5.3 Restrictions

In these instructions, Rd, and Rm must only specify R0-R7.

When Rd is the PC in a MOV instruction:

- Bit[0] of the result is discarded.
- A branch occurs to the address created by forcing bit[0] of the result to 0. The T-bit remains unmodified.

Remark: Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction to branch for software portability.

25.4.5.5.4 Condition flags

If S is specified, these instructions:

- update the N and Z flags according to the result
- · do not affect the C or V flags.

25.4.5.5.5 Example

```
MOVS R0, #0x000B ; Write value of 0x000B to R0, flags get updated

MOVS R1, #0x0 ; Write value of zero to R1, flags are updated

MOV R10, R12 ; Write value in R12 to R10, flags are not updated

MOVS R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, R0 ; Write inverse of R0 to the R2 and update flags
```

25.4.5.6 MULS

Multiply using 32-bit operands, and producing a 32-bit result.

25.4.5.6.1 Syntax

MULS Rd, Rn, Rm

where:

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.5.6.2 Operation

The MUL instruction multiplies the values in the registers specified by *Rn* and *Rm*, and places the least significant 32 bits of the result in *Rd*. The condition code flags are updated on the result of the operation, see Section 25–25.4.3.6.

The results of this instruction does not depend on whether the operands are signed or unsigned.

25.4.5.6.3 Restrictions

In this instruction:

- Rd, Rn, and Rm must only specify R0-R7
- Rd must be the same as Rm.

25.4.5.6.4 Condition flags

This instruction:

- updates the N and Z flags according to the result
- does not affect the C or V flags.

25.4.5.6.5 Examples

```
MULS RO, R2, RO; Multiply with flag update, RO = RO x R2
```

25.4.5.7 REV, REV16, and REVSH

Reverse bytes.

25.4.5.7.1 Syntax

REV Rd. Rn

REV16 Rd, Rn

REVSH Rd, Rn

where:

Rd is the destination register.

Rn is the source register.

25.4.5.7.2 Operation

Use these instructions to change endianness of data:

REV — converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

REV16 — converts two packed 16-bit big-endian data into little-endian data or two packed 16-bit little-endian data into big-endian data.

REVSH — converts 16-bit signed big-endian data into 32-bit signed little-endian data or 16-bit signed little-endian data into 32-bit signed big-endian data.

25.4.5.7.3 Restrictions

In these instructions, *Rd*, and *Rn* must only specify R0-R7.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.5.7.4 Condition flags

These instructions do not change the flags.

25.4.5.7.5 Examples

```
REV R3, R7; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5; Reverse signed halfword
```

25.4.5.8 SXT and UXT

Sign extend and Zero extend.

25.4.5.8.1 Syntax

SXTB Rd, Rm

SXTH Rd, Rm

UXTB Rd, Rm

UXTH Rd, Rm

where:

Rd is the destination register.

Rm is the register holding the value to be extended.

25.4.5.8.2 Operation

These instructions extract bits from the resulting value:

- SXTB extracts bits[7:0] and sign extends to 32 bits
- UXTB extracts bits[7:0] and zero extends to 32 bits
- SXTH extracts bits[15:0] and sign extends to 32 bits
- UXTH extracts bits[15:0] and zero extends to 32 bits.

25.4.5.8.3 Restrictions

In these instructions, Rd and Rm must only specify R0-R7.

25.4.5.8.4 Condition flags

These instructions do not affect the flags.

25.4.5.8.5 Examples

```
SXTH R4, R6; Obtain the lower halfword of the; value in R6 and then sign extend to; 32 bits and write the result to R4.

UXTB R3, R1; Extract lowest byte of the value in R10 and zero; extend it, and write the result to R3
```

25.4.5.9 TST

Test bits.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.5.9.1 Syntax

TST Rn, Rm

where:

Rn is the register holding the first operand.

Rm the register to test against.

25.4.5.9.2 Operation

This instruction tests the value in a register against another register. It updates the condition flags based on the result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in *Rn* and the value in *Rm*. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of *Rn* is 0 or 1, use the TST instruction with a register that has that bit set to 1 and all other bits cleared to 0.

25.4.5.9.3 Restrictions

In these instructions, *Rn* and *Rm* must only specify R0-R7.

25.4.5.9.4 Condition flags

This instruction:

- updates the N and Z flags according to the result
- does not affect the C or V flags.

25.4.5.9.5 Examples

```
TST RO, R1 ; Perform bitwise AND of RO value and R1 value, ; condition code flags are updated but result is discarded
```

25.4.6 Branch and control instructions

Table 303 shows the branch and control instructions:

Table 303. Branch and control instructions

Mnemonic	Brief description	See
B{cc}	Branch (conditionally)	Section 25–25.4.6.1
BL	Branch with Link	Section 25–25.4.6.1
BLX	Branch indirect with Link	Section 25–25.4.6.1
ВХ	Branch indirect	Section 25–25.4.6.1

25.4.6.1 B, BL, BX, and BLX

Branch instructions.

25.4.6.1.1 Syntax

B{cond} label

BL label

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

BX Rm

BLX Rm

where:

cond is an optional condition code, see Section 25–25.4.3.6. *label* is a PC-relative expression. See Section 25–25.4.3.5. *Rm* is a register providing the address to branch to.

25.4.6.1.2 Operation

All these instructions cause a branch to the address indicated by *label* or contained in the register specified by *Rm*. In addition:

- The BL and BLX instructions write the address of the next instruction to LR, the link register R14.
- The BX and BLX instructions result in a HardFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use by a subsequent POP {PC} or BX instruction to perform a successful return branch.

Table 304 shows the ranges for the various branch instructions.

Table 304. Branch ranges

Instruction	Branch range
B label	−2 KB to +2 KB
Bcond label	-256 bytes to +254 bytes
BL label	–16 MB to +16 MB
BX Rm	Any value in register
BLX Rm	Any value in register

25.4.6.1.3 Restrictions

In these instructions:

- Do not use SP or PC in the BX or BLX instruction.
- For BX and BLX, bit[0] of *Rm* must be 1 for correct execution. Bit[0] is used to update the EPSR T-bit and is discarded from the target address.

Remark: Bcond is the only conditional instruction on the Cortex-M0 processor.

25.4.6.1.4 Condition flags

These instructions do not change the flags.

25.4.6.1.5 Examples

```
B loopA ; Branch to loopA

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR
```

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

```
BX LR ; Return from function call
BLX R0 ; Branch with link and exchange (Call) to a address stored
; in R0

BEQ labelD ; Conditionally branch to labelD if last flag setting
; instruction set the Z flag, else do not branch.
```

25.4.7 Miscellaneous instructions

Table 305 shows the remaining Cortex-M0 instructions:

Table 305. Miscellaneous instructions

Mnemonic	Brief description	See
BKPT	Breakpoint	Section 25–25.4.7. <u>1</u>
CPSID	Change Processor State, Disable Interrupts	Section 25–25.4.7. <u>2</u>
CPSIE	Change Processor State, Enable Interrupts	Section 25–25.4.7. <u>2</u>
DMB	Data Memory Barrier	Section 25–25.4.7. 3
DSB	Data Synchronization Barrier	Section 25–25.4.7. <u>4</u>
ISB	Instruction Synchronization Barrier	Section 25–25.4.7. <u>5</u>
MRS	Move from special register to register	Section 25–25.4.7. 6
MSR	Move from register to special register	Section 25–25.4.7. 7
NOP	No Operation	Section 25–25.4.7. <u>8</u>
SEV	Send Event	Section 25–25.4.7. 9
SVC	Supervisor Call	Section 25–25.4.7. 10
WFE	Wait For Event	Section 25–25.4.7. 11
WFI	Wait For Interrupt	Section 25–25.4.7. 12

25.4.7.1 BKPT

Breakpoint.

25.4.7.1.1 Syntax

BKPT #imm

where:

imm is an integer in the range 0-255.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.1.2 Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. *imm* is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint.

The processor might also produce a HardFault or go in to lockup if a debugger is not attached when a BKPT instruction is executed. See <u>Section 25–25.3.4.1</u> for more information.

25.4.7.1.3 Restrictions

There are no restrictions.

25.4.7.1.4 Condition flags

This instruction does not change the flags.

25.4.7.1.5 Examples

```
BKPT \#0; Breakpoint with immediate value set to 0x0.
```

25.4.7.2 CPS

Change Processor State.

25.4.7.2.1 Syntax

CPSID i

CPSIE i

25.4.7.2.2 Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK.See Section 25–25.3.1.3.6 for more information about these registers.

25.4.7.2.3 Restrictions

There are no restrictions.

25.4.7.2.4 Condition flags

This instruction does not change the condition flags.

25.4.7.2.5 Examples

```
CPSID i ; Disable all interrupts except NMI (set PRIMASK)
CPSIE i ; Enable interrupts (clear PRIMASK)
```

25.4.7.3 DMB

Data Memory Barrier.

25.4.7.3.1 Syntax

DMB

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.3.2 Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear in program order before the DMB instruction are observed before any explicit memory accesses that appear in program order after the DMB instruction. DMB does not affect the ordering of instructions that do not access memory.

25.4.7.3.3 Restrictions

There are no restrictions.

25.4.7.3.4 Condition flags

This instruction does not change the flags.

25.4.7.3.5 Examples

DMB ; Data Memory Barrier

25.4.7.4 DSB

Data Synchronization Barrier.

25.4.7.4.1 Syntax

DSB

25.4.7.4.2 Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory accesses before it complete.

25.4.7.4.3 Restrictions

There are no restrictions.

25.4.7.4.4 Condition flags

This instruction does not change the flags.

25.4.7.4.5 Examples

DSB ; Data Synchronisation Barrier

25.4.7.5 ISB

Instruction Synchronization Barrier.

25.4.7.5.1 Syntax

ISB

25.4.7.5.2 Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.5.3 Restrictions

There are no restrictions.

25.4.7.5.4 Condition flags

This instruction does not change the flags.

25.4.7.5.5 Examples

ISB ; Instruction Synchronisation Barrier

25.4.7.6 MRS

Move the contents of a special register to a general-purpose register.

25.4.7.6.1 Syntax

MRS Rd, spec_reg

where:

Rd is the general-purpose destination register.

spec_reg is one of the special-purpose registers: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

25.4.7.6.2 Operation

MRS stores the contents of a special-purpose register to a general-purpose register. The MRS instruction can be combined with the MR instruction to produce read-modify-write sequences, which are suitable for modifying a specific flag in the PSR.

See Section 25-25.4.7.7.

25.4.7.6.3 Restrictions

In this instruction, Rd must not be SP or PC.

25.4.7.6.4 Condition flags

This instruction does not change the flags.

25.4.7.6.5 Examples

MRS RO, PRIMASK; Read PRIMASK value and write it to RO

25.4.7.7 MSR

Move the contents of a general-purpose register into the specified special register.

25.4.7.7.1 Syntax

MSR spec_reg, Rn

where:

Rn is the general-purpose source register.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

spec_reg is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

25.4.7.7.2 Operation

MSR updates one of the special registers with the value from the register specified by Rn.

See Section 25-25.4.7.6.

25.4.7.7.3 Restrictions

In this instruction, Rn must not be SP and must not be PC.

25.4.7.7.4 Condition flags

This instruction updates the flags explicitly based on the value in *Rn*.

25.4.7.7.5 Examples

MSR CONTROL, R1; Read R1 value and write it to the CONTROL register

25.4.7.8 NOP

No Operation.

25.4.7.8.1 Syntax

NOP

25.4.7.8.2 Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor might remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the subsequent instructions on a 64-bit boundary.

25.4.7.8.3 Restrictions

There are no restrictions.

25.4.7.8.4 Condition flags

This instruction does not change the flags.

25.4.7.8.5 Examples

NOP ; No operation

25.4.7.9 SEV

Remark: The SEV instruction is not implemented on the LPC11Axx.

Send Event.

25.4.7.9.1 Syntax

SEV

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.9.2 Operation

SEV causes an event to be signaled to all processors within a multiprocessor system. It also sets the local event register, see Section 25–25.3.5.

See also Section 25-25.4.7.11.

25.4.7.9.3 Restrictions

There are no restrictions.

25.4.7.9.4 Condition flags

This instruction does not change the flags.

25.4.7.9.5 Examples

SEV ; Send Event

25.4.7.10 SVC

Supervisor Call.

25.4.7.10.1 Syntax

SVC #imm

where:

imm is an integer in the range 0-255.

25.4.7.10.2 Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is being requested.

25.4.7.10.3 Restrictions

There are no restrictions.

25.4.7.10.4 Condition flags

This instruction does not change the flags.

25.4.7.10.5 Examples

SVC #0x32; Supervisor Call (SVC handler can extract the immediate value; by locating it via the stacked PC)

25.4.7.11 WFE

Wait For Event.

Remark: The WFE instruction is not implemented on the LPC11Axx.

25.4.7.11.1 Syntax

WFE

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.11.2 Operation

If the event register is 0, WFE suspends execution until one of the following events occurs:

- an exception, unless masked by the exception mask registers or the current priority level
- an exception enters the Pending state, if SEVONPEND in the System Control Register is set
- · a Debug Entry request, if debug is enabled
- an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

If the event register is 1, WFE clears it to 0 and completes immediately.

For more information see Section 25–25.3.5.

Remark: WFE is intended for power saving only. When writing software assume that WFE might behave as NOP.

25.4.7.11.3 Restrictions

There are no restrictions.

25.4.7.11.4 Condition flags

This instruction does not change the flags.

25.4.7.11.5 Examples

WFE ; Wait for event

25.4.7.12 WFI

Wait for Interrupt.

25.4.7.12.1 Syntax

WFI

25.4.7.12.2 Operation

WFI

suspends execution until one of the following events occurs:

- an exception
- an interrupt becomes pending which would preempt if PRIMASK was clear
- a Debug Entry request, regardless of whether debug is enabled.

Remark: WFI is intended for power saving only. When writing software assume that WFI might behave as a NOP operation.

25.4.7.12.3 Restrictions

There are no restrictions.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.4.7.12.4 Condition flags

This instruction does not change the flags.

25.4.7.12.5 Examples

WFI ; Wait for interrupt

25.5 Peripherals

25.5.1 About the ARM Cortex-M0

The address map of the Private peripheral bus (PPB) is:

Table 306. Core peripheral register regions

Address	Core peripheral	Description
0xE000E008-0xE000E00F	System Control Block	Table 25–315
0xE000E010-0xE000E01F	System timer	Table 25–324
0xE000E100-0xE000E4EF	Nested Vectored Interrupt Controller	Table 25–307
0xE000ED00-0xE000ED3F	System Control Block	Table 25–315
0xE000EF00-0xE000EF03	Nested Vectored Interrupt Controller	Table 25–307

In register descriptions, the register **type** is described as follows:

RW — Read and write.

RO — Read-only.

WO — Write-only.

25.5.2 Nested Vectored Interrupt Controller

This section describes the **Nested Vectored Interrupt Controller** (NVIC) and the registers it uses. The NVIC supports:

- 32 interrupts.
- A programmable priority level of 0-3 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
- · Level and pulse detection of interrupt signals.
- Interrupt tail-chaining.
- An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC registers is:

Table 307. NVIC register summary

Address	Name	Туре	Reset value	Description
0xE000E100	ISER	RW	0x0000000	Section 25–25.5.2.2
0xE000E180	ICER	RW	0x0000000	Section 25–25.5.2.3

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 307. NVIC register summary

Address	Name	Туре	Reset value	Description
0xE000E200	ISPR	RW	0x0000000	Section 25–25.5.2.4
0xE000E280	ICPR	RW	0x00000000	Section 25–25.5.2.5
0xE000E400- 0xE000E41C	IPR0-7	RW	0x00000000	Section 25–25.5.2.6

25.5.2.1 Accessing the Cortex-M0 NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

Table 308. CMSIS access to NVIC functions

CMSIS function	Description
void NVIC_EnableIRQ(IRQn_Type IRQn)[1]	Enables an interrupt or exception.
void NVIC_DisableIRQ(IRQn_Type IRQn)[1]	Disables an interrupt or exception.
void NVIC_SetPendingIRQ(IRQn_Type IRQn)[1]	Sets the pending status of interrupt or exception to 1.
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)[1]	Clears the pending status of interrupt or exception to 0.
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)[1]	Reads the pending status of interrupt or exception. This function returns non-zero value if the pending status is set to 1.
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)[1]	Sets the priority of an interrupt or exception with configurable priority level to 1.
uint32_t NVIC_GetPriority(IRQn_Type IRQn)[1]	Reads the priority of an interrupt or exception with configurable priority level. This function returns the current priority level.

^[1] The input parameter IRQn is the IRQ number, see Table 294 for more information.

25.5.2.2 Interrupt Set-enable Register

The ISER enables interrupts, and shows which interrupts are enabled. See the register summary in Table 307 for the register attributes.

The bit assignments are according to the IRQ numbers in Table 38.

Table 309. ISER bit assignments

Bits	Name	Function
[31:0]	SETENA	Interrupt set-enable bits.
		Write:
		0 = no effect
		1 = enable interrupt.
		Read:
		0 = interrupt disabled
		1 = interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.5.2.3 Interrupt Clear-enable Register

The ICER disables interrupts, and show which interrupts are enabled. See the register summary in Table 25–307 for the register attributes.

The bit assignments are according to the IRQ numbers in Table 38.

Table 310. ICER bit assignments

Bits	Name	Function
[31:0]	CLRENA	Interrupt clear-enable bits.
		Write:
		0 = no effect
		1 = disable interrupt.
		Read:
		0 = interrupt disabled
		1 = interrupt enabled.

25.5.2.4 Interrupt Set-pending Register

The ISPR forces interrupts into the pending state, and shows which interrupts are pending. See the register summary in Table 25–307 for the register attributes.

The bit assignments are according to the IRQ numbers in Table 38.

Table 311. ISPR bit assignments

	•	
Bits	Name	Function
[31:0]	SETPEND	Interrupt set-pending bits.
		Write:
		0 = no effect
		1 = changes interrupt state to pending.
		Read:
		0 = interrupt is not pending
		1 = interrupt is pending.

Remark: Writing 1 to the ISPR bit corresponding to:

- an interrupt that is pending has no effect
- a disabled interrupt sets the state of that interrupt to pending.

25.5.2.5 Interrupt Clear-pending Register

The ICPR removes the pending state from interrupts, and shows which interrupts are pending. See the register summary in Table 25–307 for the register attributes.

The bit assignments are according to the IRQ numbers in Table 38.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 312. ICPR bit assignments

Bits	Name	Function
[31:0]	CLRPEND	Interrupt clear-pending bits.
		Write:
		0 = no effect
		1 = removes pending state an interrupt.
		Read:
		0 = interrupt is not pending
		1 = interrupt is pending.

Remark: Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

25.5.2.6 Interrupt Priority Registers

The IPR0-IPR7 registers provide a priority field for each interrupt. These registers are only word-accessible. See the register summary in <u>Table 25–307</u> for their attributes. Each register holds four priority fields as shown, and are arranged according to the IRQ numbers in <u>Table 38</u>.

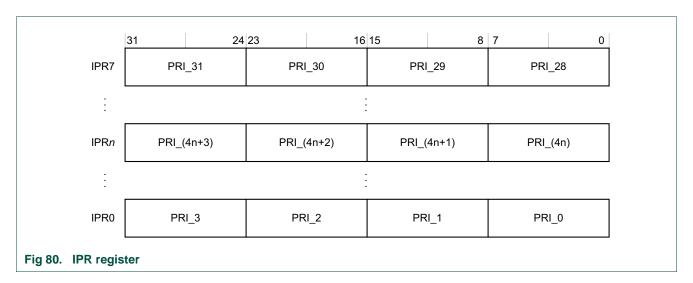


Table 313. IPR bit assignments

Bits	Name	Function
[31:24]	Priority, byte offset 3	Each priority field holds a priority value 0-3 in bit [7:6]. The
[23:16]	Priority, byte offset 2	lower the value, the greater the priority of the corresponding interrupt. Bits [5:0] of each field read as zero and are ignored
[15:8]	Priority, byte offset 1	on writes.
[7:0]	Priority, byte offset 0	

See <u>Section 25–25.5.2.1</u> for more information about the access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt **M** as follows:

- the corresponding IPR number, N, is given by N = M DIV 4
- the byte offset of the required Priority field in this register is **M** MOD 4, where:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

- byte offset 0 refers to register bits[7:0]
- byte offset 1 refers to register bits[15:8]
- byte offset 2 refers to register bits[23:16]
- byte offset 3 refers to register bits[31:24].

25.5.2.7 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see <u>Section 25.5.2.7.1</u>. For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

25.5.2.7.1 Hardware and software control of interrupts

The Cortex-M0 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

- the NVIC detects that the interrupt signal is active and the corresponding interrupt is not active
- the NVIC detects a rising edge on the interrupt signal
- software writes to the corresponding interrupt set-pending register bit, see Section 25–25.5.2.4.

A pending interrupt remains pending until one of the following:

- The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:
 - For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.
 - For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR.
 If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the ISR the state of the interrupt changes to inactive.
- Software writes to the corresponding interrupt clear-pending register bit.
 For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

UM10527

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

For a pulse interrupt, state of the interrupt changes to:

- inactive, if the state was pending
- active, if the state was active and pending.

25.5.2.8 NVIC usage hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the processor from taking that interrupt.

25.5.2.8.1 NVIC programming hints

Software uses the CPSIE i and instructions to enable and disable interrupts. The CMSIS provides the following intrinsic functions for these instructions:

```
void __disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
```

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 314. CMSIS functions for NVIC control

CMSIS interrupt control function	Description
<pre>void NVIC_EnableIRQ(IRQn_t IRQn)</pre>	Enable IRQn
void NVIC_DisableIRQ(IRQn_t IRQn)	Disable IRQn
uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn)	Return true (1) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQn)	Set IRQn pending
void NVIC_ClearPendingIRQ (IRQn_t IRQn)	Clear IRQn pending status
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)	Set priority for IRQn
uint32_t NVIC_GetPriority (IRQn_t IRQn)	Read priority of IRQn
void NVIC_SystemReset (void)	Reset the system

The input parameter IRQn is the IRQ number, see <u>Table 25–294</u> for more information. For more information about these functions, see the CMSIS documentation.

25.5.3 System Control Block

The **System Control Block** (SCB) provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions. The SCB registers are:

Table 315. Summary of the SCB registers

Address	Name	Type	Reset value	Description
0xE000ED00	CPUID	RO	0x410CC200	Section 25.5.3.2
0xE000ED04	ICSR	RW ^[1]	0x00000000	Section 25–25.5.3.3
0xE000ED0C	AIRCR	RW[1]	0xFA050000	Section 25–25.5.3.4
0xE000ED10	SCR	RW	0x00000000	Section 25–25.5.3.5

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 315. Summary of the SCB registers

Address	Name	Type	Reset value	Description
0xE000ED14	CCR	RO	0x00000204	Section 25–25.5.3.6
0xE000ED1C	SHPR2	RW	0x0000000	Section 25–25.5.3.7.1
0xE000ED20	SHPR3	RW	0x00000000	Section 25–25.5.3.7.2

^[1] See the register description for more information.

25.5.3.1 CMSIS mapping of Cortex-M0 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the array <code>SHP[1]</code> corresponds to the registers SHPR2-SHPR3.

25.5.3.2 CPUID Register

The CPUID register contains the processor part number, version, and implementation information. See the register summary in for its attributes. The bit assignments are:

Table 316. CPUID register bit assignments

Bits	Name	Function
[31:24]	Implementer	Implementer code: 0x41 = ARM
[23:20]	Variant	Variant number, the r value in the rnpn product revision identifier: 0x0 = Revision 0
[19:16]	Constant	Constant that defines the architecture of the processor:, reads as $0xc = ARMv6-M$ architecture
[15:4]	Partno	Part number of the processor: 0xc20 = Cortex-M0
[3:0]	Revision	Revision number, the p value in the rnpn product revision identifier: 0x0 = Patch 0

25.5.3.3 Interrupt Control and State Register

The ICSR:

- provides:
 - a set-pending bit for the **Non-Maskable Interrupt** (NMI) exception
 - set-pending and clear-pending bits for the PendSV and SysTick exceptions
- indicates:
 - the exception number of the exception being processed
 - whether there are preempted active exceptions
 - the exception number of the highest priority pending exception
 - whether any interrupts are pending.

See the register summary in <u>Table 25–315</u> for the ICSR attributes. The bit assignments are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 317. ICSR bit assignments

Table 317.	ICSR bit assignments			
Bits	Name	Туре	Function	
[31]	NMIPENDSET	RW	NMI set-pending bit.	
			Write:	
			0 = no effect	
			1 = changes NMI exception state to pending.	
			Read:	
			0 = NMI exception is not pending	
			1 = NMI exception is pending.	
			Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.	
[30:29]	-	-	Reserved.	
[28]	PENDSVSET	RW	PendSV set-pending bit.	
			Write:	
			0 = no effect	
			1 = changes PendSV exception state to pending.	
			Read:	
			0 = PendSV exception is not pending	
			1 = PendSV exception is pending.	
			Writing 1 to this bit is the only way to set the PendSV exception state to pending.	
[27]	PENDSVCLR	WO	PendSV clear-pending bit.	
			Write:	
			0 = no effect	
			1 = removes the pending state from the PendSV exception.	
[26]	PENDSTSET	RW	SysTick exception set-pending bit.	
			Write:	
			0 = no effect	
			1 = changes SysTick exception state to pending.	
			Read:	
			0 = SysTick exception is not pending	
			1 = SysTick exception is pending.	
[25]	PENDSTCLR	WO	SysTick exception clear-pending bit. Write:	
			0 = no effect	
			1 = removes the pending state from the SysTick exception.	
			This bit is WO. On a register read its value is Unknown.	
[24:23]	-	-	Reserved.	

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 317. ICSR bit assignments

Bits	Name	Туре	Function
[22]	ISRPENDING	RO	Interrupt pending flag, excluding NMI and Faults:
			0 = interrupt not pending
			1 = interrupt pending.
[21:18]	-	-	Reserved.
[17:12]	VECTPENDING	RO	Indicates the exception number of the highest priority pending enabled exception:
			0 = no pending exceptions
			Nonzero = the exception number of the highest priority pending enabled exception.
[11:6]	-	-	Reserved.
[5:0]	VECTACTIVE[1]	RO	Contains the active exception number:
			0 = Thread mode
			Nonzero = The exception number of the currently active exception.
			Remark: Subtract 16 from this value to obtain the CMSIS IRQ number that identifies the corresponding bit in the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-pending, and Priority Register, see <u>Table 25–289</u> .

^[1] This is the same value as IPSR bits[5:0], see Table 25–289.

When you write to the ICSR, the effect is Unpredictable if you:

- write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
- write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

25.5.3.4 Application Interrupt/Reset Control Register

The AIRCR provides endian status for data accesses and reset control of the system. See the register summary in <u>Table 25–315</u> and <u>Table 25–318</u> for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.

The bit assignments are:

Table 318. AIRCR bit assignments

Bits	Name	Type	Function
[31:16]	Read: Reserved	RW	Register key:
	Write: VECTKEY		Reads as Unknown
			On writes, write $0 \times 05FA$ to VECTKEY, otherwise the write is ignored.
[15]	ENDIANESS	RO	Data endianness implemented:
			0 = Little-endian
			1 = Big-endian.
[14:3]	-	-	Reserved

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 318. AIRCR bit assignments

Bits	Name	Туре	Function
[2]	SYSRESETREQ	WO	System reset request:
			0 = no effect
			1 = requests a system level reset.
			This bit reads as 0.
[1]	VECTCLRACTIVE	WO	Reserved for debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.
[0]	-	-	Reserved.

25.5.3.5 System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary in Table 25–315 for its attributes. The bit assignments are:

Table 319. SCR bit assignments

Bits	Name	Function
[31:5]	-	Reserved.
[4]	SEVONPEND	Send Event on Pending bit:
		0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
		1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.
		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.
		The processor also wakes up on execution of an SEV instruction.
[3]	-	Reserved.
[2]	SLEEPDEEP	Controls whether the processor uses sleep or deep sleep as its low power mode (Deep-sleep mode is not supported on the LPC11Axx):
		0 = sleep
		1 = deep sleep (not supported on the LPC11Axx; do not use this setting)
[1]	SLEEPONEXIT	Indicates sleep-on-exit when returning from Handler mode to Thread mode:
		0 = do not sleep when returning to Thread mode.
		1 = enter sleep, or deep sleep, on return from an ISR to Thread mode (Deep-sleep is not supported on the LPC11Axx).
		Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.
[0]	-	Reserved.

25.5.3.6 Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex-M0 processor. See the register summary in <u>Table 25–315</u> for the CCR attributes.

The bit assignments are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 320. CCR bit assignments

Bits	Name	Function
[31:10]	-	Reserved.
[9]	STKALIGN	Always reads as one, indicates 8-byte stack alignment on exception entry.
		On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the exception it uses this stacked bit to restore the correct stack alignment.
[8:4]	-	Reserved.
[3]	UNALIGN_TRP	Always reads as one, indicates that all unaligned accesses generate a HardFault.
[2:0]	-	Reserved.

25.5.3.7 System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 3, of the exception handlers that have configurable priority.

SHPR2-SHPR3 are word accessible. See the register summary in <u>Table 25–315</u> for their attributes.

To access to the system exception priority level using CMSIS, use the following CMSIS functions:

- uint32 t NVIC GetPriority(IRQn Type IRQn)
- void NVIC SetPriority(IRQn Type IRQn, uint32 t priority)

The input parameter IRQn is the IRQ number, see Table 25-294 for more information.

The system fault handlers, and the priority field and register for each handler are:

Table 321. System fault handler priority fields

	-		
Handler	Field	Register description	
SVCall	PRI_11	Section 25–25.5.3.7.1	
PendSV	PRI_14	Section 25–25.5.3.7.2	
SysTick	PRI_15		

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, and bits[5:0] read as zero and ignore writes.

25.5.3.7.1 System Handler Priority Register 2

The bit assignments are:

Table 322. SHPR2 register bit assignments

Bits	Name	Function
[31:24]	PRI_11	Priority of system handler 11, SVCall
[23:0]	-	Reserved

25.5.3.7.2 System Handler Priority Register 3

The bit assignments are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 323. SHPR3 register bit assignments

Bits	Name	Function
[31:24]	PRI_15	Priority of system handler 15, SysTick exception
[23:16]	PRI_14	Priority of system handler 14, PendSV
[15:0]	-	Reserved

25.5.3.8 SCB usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

25.5.4 System timer, SysTick

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value in the SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of zero to the SYST_RVR disables the counter on the next wrap. When the counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading SYST_CSR clears the COUNTFLAG bit to 0.

Writing to the SYST_CVR clears the register and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic. Reading the register returns its value at the time it is accessed.

Remark: When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 324. System timer registers summary

Address	Name	Туре	Reset value	Description
0xE000E010	SYST_CSR	RW	0x00000000	Section 25.5.4.1
0xE000E014	SYST_RVR	RW	Unknown	Section 25–25.5.4.2
0xE000E018	SYST_CVR	RW	Unknown	Section 25–25.5.4.3
0xE000E01C	SYST_CALIB	RO	0xC0000000[1]	Section 25–25.5.4.4

^[1] SysTick calibration value.

25.5.4.1 SysTick Control and Status Register

The SYST_CSR enables the SysTick features. See the register summary in for its attributes. The bit assignments are:

Table 325. SYST_CSR bit assignments

Bits	Name	Function
[31:17]	-	Reserved.
[16]	COUNTFLAG	Returns 1 if timer counted to 0 since the last read of this register.
[15:3]	-	Reserved.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 325. SYST_CSR bit assignments

Bits	Name	Function
[2] CLKSOURCE		Selects the SysTick timer clock source:
		0 = external reference clock
		1 = processor clock.
[1]	TICKINT	Enables SysTick exception request:
		0 = counting down to zero does not assert the SysTick exception request
		1 = counting down to zero to asserts the SysTick exception request.
[0]	ENABLE	Enables the counter:
		0 = counter disabled
		1 = counter enabled.

25.5.4.2 SysTick Reload Value Register

The SYST_RVR specifies the start value to load into the SYST_CVR. See the register summary in Table 25–324 for its attributes. The bit assignments are:

Table 326. SYST_RVR bit assignments

Bits	Name	Function
[31:24]	-	Reserved.
[23:0]	RELOAD	Value to load into the SYST_CVR when the counter is enabled and when it reaches 0, see Section 25.5.4.2.1.

25.5.4.2.1 Calculating the RELOAD value

The RELOAD value can be any value in the range <code>0x0000001-0x00FFFFFF</code>. You can program a value of 0, but this has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

25.5.4.3 SysTick Current Value Register

The SYST_CVR contains the current value of the SysTick counter. See the register summary in Table 25–324 for its attributes. The bit assignments are:

Table 327. SYST_CVR bit assignments

Bits	Name	Function
[31:24]	-	Reserved.
[23:0]	CURRENT	Reads return the current value of the SysTick counter. A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

25.5.4.4 SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in Table 25–324 for its attributes. The bit assignments are:

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 328. SYST_CALIB register bit assignments

Bits	Name	Function
[31]	NOREF	Reads as one. Indicates that no separate reference clock is provided.
[30]	SKEW	Reads as one. Calibration value for the 10ms inexact timing is not known because TENMS is not known. This can affect the suitability of SysTick as a software real time clock.
[29:24]	-	Reserved.
[23:0]	TENMS	Reads as zero. Indicates calibration value is not known.

If calibration information is not known, calculate the calibration value required from the frequency of the processor clock or external clock.

25.5.4.5 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for low power mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the SysTick counter is:

- 1. Program reload value.
- 2. Clear current value.
- 3. Program Control and Status register.

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

25.6 Cortex-M0 instruction summary

Table 329. Cortex M0- instruction summary

Operation	Description	Assembler	Cycles
Move	8-bit immediate	MOVS Rd, # <imm></imm>	1
	Lo to Lo	MOVS Rd, Rm	1
	Any to Any	MOV Rd, Rm	1
	Any to PC	MOV PC, Rm	3
Add	3-bit immediate	ADDS Rd, Rn, # <imm></imm>	1
	All registers Lo	ADDS Rd, Rn, Rm	1
	Any to Any	ADD Rd, Rd, Rm	1
	Any to PC	ADD PC, PC, Rm	3
Add	8-bit immediate	ADDS Rd, Rd, # <imm></imm>	1
	With carry	ADCS Rd, Rd, Rm	1
	Immediate to SP	ADD SP, SP, # <imm></imm>	1
	Form address from SP	ADD Rd, SP, # <imm></imm>	1
	Form address from PC	ADR Rd, <label></label>	1
Subtract	Lo and Lo	SUBS Rd, Rn, Rm	1
	3-bit immediate	SUBS Rd, Rn, # <imm></imm>	1
	8-bit immediate	SUBS Rd, Rd, # <imm></imm>	1
	With carry	SBCS Rd, Rd, Rm	1
	Immediate from SP	SUB SP, SP, # <imm></imm>	1
	Negate	RSBS Rd, Rn, #0	1
Multiply	Multiply	MULS Rd, Rm, Rd	1
Compare	Compare	CMP Rn, Rm	1
	Negative	CMN Rn, Rm	1
	Immediate	CMP Rn, # <imm></imm>	1
_ogical	AND	ANDS Rd, Rd, Rm	1
	Exclusive OR	EORS Rd, Rd, Rm	1
	OR	ORRS Rd, Rd, Rm	1
	Bit clear	BICS Rd, Rd, Rm	1
	Move NOT	MVNS Rd, Rm	1
	AND test	TST Rn, Rm	1
Shift	Logical shift left by immediate	LSLS Rd, Rm, # <shift></shift>	1
	Logical shift left by register	LSLS Rd, Rd, Rs	1
	Logical shift right by immediate	LSRS Rd, Rm, # <shift></shift>	1
	Logical shift right by register	LSRS Rd, Rd, Rs	1
	Arithmetic shift right	ASRS Rd, Rm, # <shift></shift>	1
	Arithmetic shift right by register	ASRS Rd, Rd, Rs	1
Rotate	Rotate right by register	RORS Rd, Rd, Rs	1

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 329. Cortex M0- instruction summary

Operation	Description	Assembler	Cycles
Load	Word, immediate offset	LDR Rd, [Rn, # <imm>]</imm>	2
	Halfword, immediate offset	LDRH Rd, [Rn, # <imm>]</imm>	2
	Byte, immediate offset	LDRB Rd, [Rn, # <imm>]</imm>	2
	Word, register offset	LDR Rd, [Rn, Rm]	2
	Halfword, register offset	LDRH Rd, [Rn, Rm]	2
	Signed halfword, register offset	LDRSH Rd, [Rn, Rm]	2
	Byte, register offset	LDRB Rd, [Rn, Rm]	2
	Signed byte, register offset	LDRSB Rd, [Rn, Rm]	2
	PC-relative	LDR Rd, <label></label>	2
	SP-relative	LDR Rd, [SP, # <imm>]</imm>	2
	Multiple, excluding base	LDM Rn!, { <loreglist>}</loreglist>	1 + N ^[1]
	Multiple, including base	LDM Rn, { <loreglist>}</loreglist>	1 + N[1]
Store	Word, immediate offset	STR Rd, [Rn, # <imm>]</imm>	2
Store	Halfword, immediate offset	STRH Rd, [Rn, # <imm>]</imm>	2
	Byte, immediate offset	STRB Rd, [Rn, # <imm>]</imm>	2
	Word, register offset	STR Rd, [Rn, Rm]	2
	Halfword, register offset	STRH Rd, [Rn, Rm]	2
	Byte, register offset	STRB Rd, [Rn, Rm]	2
	SP-relative	STR Rd, [SP, # <imm>]</imm>	2
	Multiple	STM Rn!, { <loreglist>}</loreglist>	1 + N[1]
Push	Push	PUSH { <loreglist>}</loreglist>	1 + N ^[1]
	Push with link register	PUSH { <loreglist>, LR}</loreglist>	1 + N ^[1]
Рор	Pop	POP { <loreglist>}</loreglist>	1 + N ^[1]
	Pop and return	POP { <loreglist>, PC}</loreglist>	4 + N[2]
Branch	Conditional	B <cc> <label></label></cc>	1 or 3[3]
	Unconditional	B <label></label>	3
	With link	BL <label></label>	4
	With exchange	BX Rm	3
	With link and exchange	BLX Rm	3
Extend	Signed halfword to word	SXTH Rd, Rm	1
	Signed byte to word	SXTB Rd, Rm	1
	Unsigned halfword	UXTH Rd, Rm	1
	Unsigned byte	UXTB Rd, Rm	1
Reverse	Bytes in word	REV Rd, Rm	1
	Bytes in both halfwords	REV16 Rd, Rm	1
	Signed bottom half word	REVSH Rd, Rm	1
State change	Supervisor Call	SVC <imm></imm>	<u>[4]</u>
3 -	Disable interrupts	CPSID i	1
	Enable interrupts	CPSIE i	 1
	Read special register	MRS Rd, <specreg></specreg>	4
			•

Chapter 25: Appendix: LPC11Axx ARM Cortex-M0 Reference

Table 329. Cortex M0- instruction summary

Operation	Description	Assembler	Cycles
Hint	Send event	SEV	1
	Wait for interrupt	WFI	2 <u>[5]</u>
	Yield	YIELD[6]	1
	No operation	NOP	1
Barriers	Instruction synchronization	ISB	4
	Data memory	DMB	4
	Data synchronization	DSB	4

^[1] N is the number of elements.

^[2] N is the number of elements in the stack-pop list including PC and assumes load or store does not generate a HardFault exception.

^{[3] 3} if taken, 1 if not taken.

^[4] Cycle count depends on core and debug configuration.

^[5] Excludes time spend waiting for an interrupt or event.

^[6] Executes as NOP.

UM10527

Chapter 26: Supplementary information Rev. 5 — 21 January 2013

User manual

26.1 Abbreviations

Table 330. Abbreviations

Acronym	Description
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
DAC	Digital-to-Analog Converter
GPIO	General Purpose Input/Output
I ² C or IIC	Inter-Integrated Circuit bus
I/O or IO	Input/Output
IAP	In-Application Programming
ISP	In-System Programming
ISR	Interrupt Service Routine
PIO	Parallel Input/Output
PLL	Phase-Locked Loop
POR	Power-On Reset
PWM	Pulse Width Modulation
SPI	Serial Peripheral Interface
SSI	Serial Synchronous Interface
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver/Transmitter

Chapter 26: Supplementary information

26.2 Legal information

26.2.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

26.2.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

26.2.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C — is a trademark of NXP B.V.

Chapter 26: Supplementary information

26.3 Tables

Table 1.	Ordering information5		address 0x4004 80E8) bit description 25
Table 2.	Ordering options5	Table 27.	POR captured PIO status register 0
Table 3.	LPC11Axx memory configuration 8		(PIOPORCAP0, address 0x4004 8100) bit
Table 4.	Pin summary10		description
Table 5.	Register overview: system control block (base	Table 28.	POR captured PIO status register 1
	address 0x4004 8000)		(PIOPORCAP1, address 0x4004 8104) bit
Table 6.	System memory remap register		description
Table 0.	(SYSMEMREMAP, address 0x4004 8000) bit	Table 29	Brown-Out Detect register (BODR, address
	description	Table 25.	0x4004 8150) bit description
Table 7.	Peripheral reset control register (PRESETCTRL,	Table 30	System tick timer calibration register
Table 1.	address 0x4004 8004) bit description13	Table 50.	(SYSTCKCAL, address 0x4004 8158) bit
Toblo 0			
Table 8.	System PLL control register (SYSPLLCTRL,	Table 21	description
Table O	address 0x4004 8008) bit description	Table 31.	NMI source selection register (NMISRC, address
Table 9.	System PLL status register (SYSPLLSTAT,	T 11 00	0x4004 8174) bit description
-	address 0x4004 800C) bit description	Table 32.	Pin interrupt select registers (PINTSEL0 to 7,
Table 10.	System oscillator control register (SYSOSCCTRL,		address 0x4004 8178 to 0x4004 8194) bit
	address 0x4004 8020) bit description 15		description
Table 11.	Watchdog oscillator control register	Table 33.	Power configuration register (PDRUNCFG,
	(WDTOSCCTRL, address 0x4004 8024) bit		address 0x4004 8238) bit description27
	description16	Table 34.	Device ID register (DEVICE_ID, address 0x4004
Table 12.	High-frequency oscillator control register		83F4) bit description
	(IRCCTRL, address 0x4004 8028) bit	Table 35.	LPC11Axx power and clock control registers 33
	description	Table 36.	PLL operating modes35
Table 13.	LF oscillator control register (LFOSCCTRL,	Table 37.	PLL frequency parameters35
	address 0x4004 802C)) bit description17		Connection of interrupt sources to the Vectored
Table 14.	System reset status register (SYSRSTSTAT,		Interrupt Controller
	address 0x4004 8030) bit description 19	Table 39.	GPIO pins available
Table 15.	System PLL clock source select register		Register overview: GPIO pin interrupts (base
	(SYSPLLCLKSEL, address 0x4004 8040) bit		address: 0x4004 C000)
	description	Table 41.	Register overview: GPIO GROUP0 interrupt
Table 16.	System PLL clock source update enable register		(base address 0x4005 C000) 41
	(SYSPLLCLKUEN, address 0x4004 8044) bit	Table 42	Register overview: GPIO GROUP1 interrupt
	description20	14510 12.	(base address 0x4006 0000)
Table 17	Main clock source select register (MAINCLKSEL,	Tahla 13	Register overview: GPIO port (base address
Table 17.	address 0x4004 8070) bit description20	Table 45.	0x5000 0000)42
Table 18	Main clock source update enable register	Table 44	Pin interrupt mode register (ISEL, address 0x4004
Table 10.	(MAINCLKUEN, address 0x4004 8074) bit	Table 44.	
		Toblo 15	C000) bit description
Table 40	description	Table 45.	Pin interrupt level (rising edge) interrupt enable
Table 19.	System clock divider register (SYSAHBCLKDIV,		register (IENR, address 0x4004 C004) bit
T.I. 00	address 0x4004 8078) bit description 21	T 11 40	description
Table 20.	System clock control register	Table 46.	Pin interrupt level (rising edge) interrupt set
	(SYSAHBCLKCTRL, address 0x4004 8080) bit		register (SIENR, address 0x4004 C008) bit
	description21		description
Table 21.	SSP0 clock divider register (SSP0CLKDIV,	Table 47.	Pin interrupt level (rising edge interrupt) clear
	address 0x4004 8094) bit description 23		register (CIENR, address 0x4004 C00C) bit
Table 22.	UART clock divider register (UARTCLKDIV,		description
	address 0x4004 8098) bit description 24	Table 48.	Pin interrupt active level (falling edge) interrupt
Table 23.	SSP1 clock divider register (SSP1CLKDIV,		enable register (IENF, address 0x4004 C010) bit
	address 0x4004 809C) bit description 24		description
Table 24.	CLKOUT clock source select register	Table 49.	Pin interrupt active level (falling edge interrupt) set
	(CLKOUTSEL, address 0x4004 80E0) bit		register (SIENF, address 0x4004 C014) bit
	description		description
Table 25.	CLKOUT clock source update enable register	Table 50.	Pin interrupt active level (falling edge) interrupt
	(CLKOUTUEN, address 0x4004 80E4) bit		clear register (CIENF, address 0x4004 C018) bit
	description		description
Table 26.	CLKOUT clock divider registers (CLKOUTDIV,	Table 51.	Pin interrupt rising edge register (RISE, address
	→ (1 0 0 10 11 (1) 1100

	0x4004 C01C) bit description46	Table 74.	GPIO clear port 1 register (CLR1, address 0x5000
Table 52.	Pin interrupt falling edge register (FALL, address		2284) bit description
	0x4004 C020) bit description	Table 75.	GPIO toggle port 0 register (NOT0, address
Table 53.	Pin interrupt status register (IST address 0x4004		0x5000 2300) bit description 53
	C024) bit description	Table 76.	GPIO toggle port 1 register (NOT1, address
Table 54.	GPIO grouped interrupt control register (CTRL,		0x5000 2304) bit description 53
	addresses 0x4005 C000 (GROUP0 INT) and	Table 77.	Pin interrupt registers for edge- and
	0x4006 0000 (GROUP1 INT)) bit description47		level-sensitive pins55
Table 55.	GPIO grouped interrupt port 0 polarity registers	Table 78.	Package-specific IOCON registers 56
	(PORT_POL0, addresses 0x4005 C020		Register overview: I/O configuration (base
	(GROUP0 INT) and 0x4006 0020 (GROUP1 INT))		address 0x4004 4000)
	bit description	Table 80.	Type D IOCON registers bit description 62
Table 56.	GPIO grouped interrupt port 1 polarity registers		Type D IOCON registers: FUNC values and pin
	(PORT_POL1, addresses 0x4005 C024		functions
	(GROUP0 INT) and 0x4006 0024 (GROUP1 INT))	Table 82.	Type I IOCON registers bit description 63
	bit description		Type I IOCON registers: FUNC values and pin
Table 57.	GPIO grouped interrupt port 0 enable registers		functions
	(PORT_ENA0, addresses 0x4005 C040	Table 84	Type A IOCON registers bit description 64
	(GROUP0 INT) and 0x4006 0040 (GROUP1 INT))		Type A IOCON registers: FUNC values and pin
	bit description	Table co.	functions
Table 58	GPIO grouped interrupt port 1 enable registers	Table 86	Pin multiplexing
Table co.	(PORT_ENA1, addresses 0x4005 C044		LPC11A1x pin description table
	(GROUP0 INT) and 0x4006 0044 (GROUP1 INT))		USART pin description
	bit description		Register overview: USART (base address:
Tahla 50	GPIO port 0 byte pin registers (B0 to B31,	Table 03.	0x4000 8000)
Table 33.	addresses 0x5000 0000 to 0x5000 001F) bit	Table 90	USART Receiver Buffer Register when DLAB = 0
	description49	Table 50.	(RBR - address 0x4000 8000) bit description . 86
Table 60	GPIO port 1 byte pin registers (B32 to B42,	Table 01	USART Transmitter Holding Register when
Table 00.	addresses 0x5000 0020 to 0x5000 0029) bit	Table 31.	DLAB = 0 (THR - address 0x4000 8000) bit
Toble 61	description	Toble 02	description
Table 61.	GPIO port 0 word pin registers (W0 to W31,	Table 92.	
	addresses 0x5000 1000 to 0x5000 107C) bit		DLAB = 1 (DLL - address 0x4000 8000) bit
Table 62	description	Table 02	description
Table 62.	GPIO port 1 word pin registers (W32 to W63,	Table 93.	USART Divisor Latch MSB Register (DLM -
	addresses 0x5000 1080 to 0x5000 10FC) bit		address 0x4000 8004 when DLAB = 1) bit
T-1-1- 00	description	T-1-1- 04	description
Table 63.	GPIO direction port 0 register (DIR0, address	Table 94.	USART Interrupt Enable Register when DLAB = 0
T	0x5000 2000) bit description50	T	(IER - address 0x4000 8004) bit description . 87
Table 64.	GPIO direction port 1 register (DIR1, address	Table 95.	USART Interrupt Identification Register (IIR -
T.I. 05	0x5000 2004) bit description	T.I.I. 00	address 0x4004 8008, RO) bit description 88
Table 65.	GPIO mask port 0 register (MASK0, address		USART Interrupt Handling
T	0x5000 2080) bit description	Table 97.	USART FIFO Control Register (FCR - address
Table 66.	GPIO mask port 1 register (MASK1, address	T	0x4000 8008, Write Only) bit description 91
	0x5000 2084) bit description	Table 98.	USART Modem Control Register (MCR - address
Table 67.	GPIO port 0 pin register (PIN0, address 0x5000		0x4000 8010) bit description
	2100) bit description		Modem status interrupt generation 93
Table 68.	GPIO port 1 pin register (PIN1, address 0x5000	Table 100	. USART Line Control Register (LCR - address
	2104) bit description		0x4000 800C) bit description 94
Table 69.	GPIO masked port 0 pin register (MPIN0, address	Table 101	. USART Line Status Register (LSR - address
	0x5000 2180) bit description		0x4000 8014, Read Only) bit description 95
Table 70.	GPIO masked port 1 pin register (MPIN1, address	Table 102	: USART Modem Status Register (MSR - address
	0x5000 2184) bit description		0x4000 8018) bit description 96
Table 71.	GPIO set port 0 register (SET0, address 0x5000	Table 103	. USART Scratch Pad Register (SCR - address
	2200) bit description		0x4000 801C) bit description 97
Table 72.	GPIO set port 1 register (SET1, address 0x5000	Table 104	. Auto-baud Control Register (ACR - address
	2204) bit description		0x4000 8020) bit description 97
Table 73.	GPIO clear port 0 register (CLR0, address 0x5000	Table 105	: IrDA Control Register (ICR - 0x4000 8024) bit
	2280) bit description		description

Table 106	: IrDA Pulse Width	Table 141. SSP pin descriptions
Table 107.	. USART Fractional Divider Register (FDR -	Table 142. Register overview: SPI0 (base address 0x4004
	address 0x4000 8028) bit description 102	0000)
Table 108.	Fractional Divider setting look-up table 104	Table 143: SPI/SSP Control Register 0 (CR0 - address
Table 109.	. USART Oversampling Register (OSR - address	0x4004 0000 (SSP0)) bit description 160
	0x4000 802C) bit description	Table 144: SPI/SSP Control Register 1 (CR1 - address
Table 110.	USART Transmit Enable Register (TER - address	0x4004 0004 (SSP0) (SSP1)) bit description. 161
	0x4000 8030) bit description	Table 145: SPI/SSP Data Register (DR - address
Table 111.	Smart Card Interface Control register (SCICTRL -	0x4004 0008 (SSP0)) bit description 162
	address 0x4000 8048) bit description106	Table 146: SPI/SSP Status Register (SR - address
Table 112.	USART RS485 Control register (RS485CTRL -	0x4004 000C (SSP0)) bit description 162
	address 0x4000 804C) bit description107	Table 147: SPI/SSP Clock Prescale Register (CPSR -
Table 113.	USART RS-485 Address Match register	address 0x4004 0010 (SSP0) (SSP1)) bit
	(RS485ADRMATCH - address 0x4000 8050) bit	description
	description	Table 148: SPI/SSP Interrupt Mask Set/Clear register (IMSC
Table 114.	USART RS-485 Delay value register (RS485DLY	- address 0x4004 0014 (SSP0)) bit
	- address 0x4000 80454) bit description 108	description
	USART Synchronous mode control register	Table 149: SPI/SSP Raw Interrupt Status register (RIS -
	(SYNCCTRL - address 0x4000 8058) bit	address 0x4004 0018 (SSP0) (SSP1)) bit
	description	description
Table 116.	I ² C-bus pin description116	Table 150: SPI/SSP Masked Interrupt Status register (MIS -
	Register overview: I ² C (base address 0x4000	address 0x4004 001C (SSP0)) bit description164
	0000)116	Table 151: SPI/SSP interrupt Clear Register (ICR - address
	I ² C Control Set register (CONSET - address	0x4004 0020 (SSP0)) bit description 164
	0x4000 0000) bit description	Table 152. Counter/timer pin description 173
	I ² C Status register (STAT - 0x4000 0004) bit	Table 153. Register overview: 16-bit counter/timer CT16B0
	description	(base address 0x4000 C000) and CT16B1 (base
	. I ² C Data register (DAT - 0x4000 0008) bit	address 0x4001 0000)
	description	Table 154. Interrupt Register (IR - address 0x4000 C000
	. I ² C Slave Address register 0 (ADR0-	(CT16B0) and 0x4001 0000) bit description . 175
	0x4000 000C) bit description	Table 155. Timer Control Register (TCR, address 0x4000
	. I ² C SCL HIGH Duty Cycle register (SCLH -	C004 (CT16B0) and 0x4001 0004 (CT16B1)) bit
	address 0x4000 0010) bit description 120	description
	. I ² C SCL Low duty cycle register (SCLL -	Table 156: Timer counter registers (TC, address
	0x4000 0014) bit description120	0x4000 C008 (CT16B0) and 0x4001 0008
	SCLL + SCLH values for selected I ² C clock	(CT16B1)) bit description
	values	Table 157: Prescale registers (PR, address 0x4000 C00C
	. I ² C Control Clear register (CONCLR -	(CT16B0) and 0x4001 000C (CT16B1)) bit
	0x4000 0018) bit description	description
	. I ² C Monitor mode control register (MMCTRL -	Table 158: Prescale counter registers (PC, address
	0x4000 001C) bit description	0x4000 C010 (CT16B0) and 0x4001 0010
	. I ² C Slave Address registers (ADR[1, 2, 3]-	(CT16B1)) bit description
Table 127	0x4000 00[20, 24, 28]) bit description	Table 159. Match Control Register (MCR, address 0x4000
Table 128	. I ² C Data buffer register (DATA_BUFFER -	C014 (CT16B0) and 0x4001 0014 (CT16B1)) bit
	0x4000 002C) bit description	description
	. I ² C Mask registers (MASK[0, 1, 2, 3] -	Table 160: Match registers (MR0 to 3, addresses
	0x4000 00[30, 34, 38, 3C]) bit description 124	0x4000 C018 to 24 (CT16B0) and 0x4001 0018 to
	CONSET used to configure Master mode129	24 (CT16B1)) bit description
	CONSET used to configure Slave mode 130	Table 161. Capture Control Register (CCR, address 0x4000
	Abbreviations used to describe I ² C operation 132	C028 (CT16B0) and 0x4001 0028 (CT16B1)) bit
	CON for Master Transmitter mode132	
	. Master Transmitter mode	description
	. Master Receiver mode	C02C to 0x4000 C034 (CT16B0), CR0 to 3,
	. ADR usage in Slave Receiver mode	addresses 0x4001 002C to 0x4001 C034
	. CON for Slave Receiver mode	(CT16B1)) bit description
	Slave Receiver mode	
	Slave Transmitter mode	Table 163. External Match Register (EMR, address 0x4000 C03C (CT16B0) and 0x4001 003C (CT16B1)) bit
14U.	. Miscellaneous States	description

Table 164	. External match control	(STCALIB - 0xE000 E01C) bit description 203
Table 165	. Count Control Register (CTCR, address 0x4000	Table 187. Register overview: Watchdog timer (base
	C070 (CT16B0) and 0x4001 0070 (CT16B1)) bit	address 0x4000 4000)
	description	Table 188. Watchdog Mode register (WDMOD - 0x4000
Table 166	. PWM Control Register (PWMC, address 0x4000	4000) bit description
	C074 (CT16B0) and 0x4001 0074 (CT16B1)) bit	Table 189. Watchdog operating modes selection 208
	description	Table 190. Watchdog Timer Constant register (WDTC -
Table 167	. Counter/timer pin description188	0x4000 4004) bit description 209
Table 168	. Register overview: 32-bit counter/timers CT32B0	Table 191. Watchdog Feed register (WDFEED - 0x4000
	(base address 0x4001 4000) and CT32B1 (base	4008) bit description 209
	address 0x4001 8000)189	Table 192. Watchdog Timer Value register (WDTV - 0x4000
Table 169	: Interrupt Register (IR, address 0x4001 4000	400C) bit description 209
	(CT32B0) and IR, address 0x4001 8000) bit	Table 193. Watchdog Clock Select register (WDCLKSEL -
	description190	0x4000 4010) bit description 210
Table 170	. Timer Control Register (TCR, address	Table 194. Watchdog Timer Warning Interrupt register
	0x4001 4004 (CT32B0) and 0x4001 8004	(WDWARNINT - 0x4000 4014) bit description210
	(CT32B1)) bit description	Table 195. Watchdog Timer Window register (WDWINDOW
Table 171	: Timer counter registers (TC, address	- 0x4000 4018) bit description 210
	0x4001 4008 (CT32B0) and 0x4001 8008	Table 196. ADC pin description
	(CT32B1)) bit description	Table 197. Register overview: ADC (base address 0x4001
Table 172	: Prescale registers (PR, address 0x4001 400C	C000)
	(CT32B0) and 0x4001 800C (CT32B1)) bit	Table 198: A/D Control Register (CR - address
T 470	description	0x4001 C000) bit description
Table 173	: Prescale registers (PC, address 0x4001 4010	Table 199: A/D Global Data Register (GDR - address
	(CT32B0) and 0x4001 8010 (CT32B1)) bit	0x4001 C004) bit description
T-1-1- 474	description	Table 200: A/D Select Register (SEL - address
Table 174	: Match Control Register (MCR, address	0x4001 C008) bit description
	0x4001 4014 (CT32B0) and 0x4001 8014	Table 201: A/D Status Register (STAT - address
Tabla 175	(CT32B1)) bit description	0x4001 C030) bit description
Table 175	: Match registers (MR0 to 3, addresses	Table 202: A/D Interrupt Enable Register (INTEN - address
	0x4001 4018 to 24 (CT32B0) and 0x4001 8018 to	0x4001 C00C) bit description
Toblo 176	24 (CT32B1)) bit description	Table 203: A/D Data Registers (DR0 to DR7 - addresses
Table 176	. Capture Control Register (CCR, address 0x4001 4028 (CT32B0) and 0x4001 8028	0x4001 C010 to 0x4001 C02C) bit
	(CT32B1)) bit description	description
Table 177	: Capture registers (CR0 to 3, addresses	Table 205. Register overview: DAC (base address 0x4002
Table 177	0x4001 402C to 0x4001 4038 (CT16B0) and CR0	4000)
	to 3, addresses 0x4001 802C to 0x4001 8038	Table 206: D/A Converter Register (CR - address 0x4002
	(CT16B1)) bit description	4000) bit description
Tahle 178	: External Match Register (EMR, address	Table 207. VDDCMP pin location
Table 170	0x4001 403C (CT32B0) and 0x4001 803C	Table 208. Comparator pin description
	(CT32B1)) bit description	Table 209. Register overview: Analog comparator (base
Table 179	External match control	address 0x4002 8000)
	: Count Control Register (CTCR, address	Table 210. Comparator control register (CTL, address
	0x4001 4070 (CT32B0) and 0x4001 8070	0x4002 8000) bit description
	(CT32B1)) bit description197	Table 211. Voltage ladder register (LAD, address 0x4002
Table 181	. PWM Control Register (PWMC, 0x4001 4074	8004) bit description
	(CT32B0) and 0x4001 8074 (CT32B1)) bit	Table 212. LPC11Axx flash configuration
	description	Table 213. Sectors in a LPC11Axx device 238
Table 182	. SysTick timer register map (base address	Table 214. Code Read Protection options 239
	0xE000 E000)	Table 215. Code Read Protection hardware/software
Table 183	System Timer Control and status register	interaction240
	(STCTRL - 0xE000 E010) bit description 202	Table 216. ISP commands allowed by CRP levels 240
Table 184	. System Timer Reload value register (STRELOAD	Table 217. ISP command summary
	- 0xE000 E014) bit description	Table 218. ISP Unlock command
Table 185	. System Timer Current value register (STCURR -	Table 219. ISP Set Baud Rate command 242
	0xE000 E018) bit description	Table 220. ISP Echo command
Table 186	. System Timer Calibration value register	Table 221. ISP Write to RAM command 243

Table 222.	ISP Read Memory command243	Table 263. I2C Master Receive Polling	267
Table 223.	ISP Prepare sector(s) for write operation	Table 264. I2C Master Transmit and Receive Polling2	267
	command	Table 265. I2C Master Transmit Interrupt	268
Table 224.	ISP Copy command244	Table 266. I2C Master Receive Interrupt	268
Table 225.	ISP Go command245	Table 267. I2C Master Transmit Receive Interrupt 2	268
Table 226.	ISP Erase sector command	Table 268. I2C Slave Receive Polling	269
Table 227.	ISP Blank check sector command 246	Table 269. I2C Slave Transmit Polling	269
Table 228.	ISP Read Part Identification command 246	Table 270. I2C Slave Receive Interrupt	269
Table 229.	LPC11Axx part identification numbers 246	Table 271. I2C Slave Transmit Interrupt	
	ISP Read Boot Code version command 246	Table 272. I2C Set Slave Address	
	ISP Compare command247	Table 273. I2C Get Memory Size	
	ReadUID command	Table 274. I2C Setup	
	ISP Return Codes Summary	Table 275. I2C Set Bit Rate	
	IAP Command Summary	Table 276. I2C Get Firmware Version	
	IAP Prepare sector(s) for write operation	Table 277. I2C Get Status	
	command	Table 278. Error codes	
	IAP Copy RAM to flash command	Table 279. I2C Status code	
	IAP Erase Sector(s) command	Table 280. set_pll routine	
	IAP Blank check sector(s) command252	Table 281. set_power routine	
	IAP Read Part Identification command 252	Table 282. SWD primary pin location	
	IAP Read Boot Code version command 252	Table 283. Serial Wire Debug pin description	
	IAP Compare command253	Table 284. JTAG boundary scan pin description 2	
	Reinvoke ISP	Table 285. Summary of processor mode and stack use	
	IAP Read UID command	options	94
	IAP Write EEPROM command	Table 286. Core register set summary	
	IAP Read EEPROM command	Table 287. PSR register combinations	
	IAP Status Codes Summary254	Table 288. APSR bit assignments	
	Memory mapping in debug mode	Table 289. IPSR bit assignments	
	Register overview: FMC (base address 0x4003	Table 290. EPSR bit assignments	
	C000)	Table 291. PRIMASK register bit assignments	
Table 249	Flash configuration register (FLASHCFG,	Table 292. CONTROL register bit assignments 2	
	address 0x4003 C010) bit description 256	Table 293. Memory access behavior	
	Flash module signature start register	Table 294. Properties of different exception types 3	
	(FMSSTART - 0x4003 C020) bit description .257	Table 295. Exception return behavior	
	Flash module signature stop register (FMSSTOP	Table 296. Cortex-M0 instructions	
	- 0x4003 C024) bit description	Table 297. CMSIS intrinsic functions to generate some	, 12
	FMSW0 register (FMSW0, address: 0x4003	Cortex-M0 instructions	21/
	C02C) bit description	Table 298. Intrinsic functions for accessing special register	
	FMSW1 register (FMSW1, address: 0x4003	via MRS/MSR	
	C030) bit description258	Table 299. Condition code suffixes	
	FMSW2 register (FMSW2, address: 0x4003	Table 300. Access instructions	
	C034) bit description	Table 301. Data processing instructions	
	FMSW3 register (FMSW3, address: 0x4003	Table 302. ADC, ADD, RSB, SBC and SUB operand	,20
	40C8) bit description	restrictions	າວຄ
	EEPROM BIST start address register	Table 303. Branch and control instructions	
Table 250.	(EEMSSTART - address 0x4003 C09C) bit	Table 304. Branch ranges	
		Table 305. Miscellaneous instructions	
	description258 EEPROM BIST stop address register		
	·	Table 306. Core peripheral register regions	
	(EEMSSTOP - address 0x4003 C0A0) bit	Table 307. NVIC register summary	
	description	Table 308. CMSIS access to NVIC functions	
	EEPROM BIST signature register (EEMSSIG -	Table 309. ISER bit assignments	
	address 0x4003 C0A4) bit description	Table 310. ICER bit assignments	
	Flash module status register (FMSTAT - 0x4003	Table 311. ISPR bit assignments	
	CFE0) bit description	Table 312. ICPR bit assignments	
	Flash module status clear register (FMSTATCLR	Table 313. IPR bit assignments	
	- 0x0x4003 CFE8) bit description	Table 314. CMSIS functions for NVIC control	
	ISR handler	Table 315. Summary of the SCB registers	
1able 262.	I2C Master Transmit Polling	Table 316. CPUID register bit assignments	υOU

UM10527 NXP Semiconductors

Table 317. ICSR bit assignments35
Table 318. AIRCR bit assignments
Table 319. SCR bit assignments
Table 320. CCR bit assignments
Table 321. System fault handler priority fields35
Table 322. SHPR2 register bit assignments
Table 323. SHPR3 register bit assignments
Table 324. System timer registers summary
Table 325. SYST_CSR bit assignments
Table 326. SYST_RVR bit assignments
Table 327. SYST_CVR bit assignments
Table 328. SYST_CALIB register bit assignments 35
Table 329. Cortex M0- instruction summary
Table 330 Abbreviations 36

Chapter 26: Supplementary information

26.4 Figures

Fig 1.	LPC11Axx block diagram6		interrupt and reset on match are enabled 184
Fig 2.	Block diagram of the configurable analog/mixed	Fig 45.	A timer cycle in which PR=2, MRx=6, and both
J	signal subsystem	J	interrupt and stop on match are enabled 185
Fig 3.	LPC11Axx memory map	Fia 46.	16-bit counter/timer block diagram 186
Fig 4.	LPC11Axx CGU block diagram	-	Sample PWM waveforms with a PWM cycle length
Fig 5.	UVLO reset behavior	9	of 100 (selected by MR2) and MAT2:0 enabled as
Fig 6.	Typical start-up time with respect to the internal		PWM outputs by the PWMC register 199
1 ig 0.	reset31	Fig 48	A timer cycle in which PR=2, MRx=6, and both
Fig 7.	Typical start-up time with respect to the external	i ig 40.	interrupt and reset on match are enabled 199
i ig 7.	reset32	Fig 40	A timer cycle in which PR=2, MRx=6, and both
Fig 8.	System PLL block diagram	i ig 1 3.	interrupt and stop on match are enabled 199
Fig 9.	Standard I/O pin configuration	Eig 50	32-bit counter/timer block diagram 200
•	Reset pad configuration	-	System tick timer block diagram 202
	Pin configuration LQFP48 package		
			Watchdog block diagram
	Pin configuration HVQFN 33 package67	rig 55.	Early Watchdog Feed with Windowed Mode Enabled
	Pin configuration WLCSP20 package	Cia E4	
	Auto-RTS Functional Timing	rig 54.	Correct Watchdog Feed with Windowed Mode
	Auto-CTS Functional Timing	Eig EE	Enabled
	Auto-baud a) mode 0 and b) mode 1 waveform 100	_	- · · · · · · · · · · · · · · · · · · ·
	Algorithm for setting USART dividers		ADC block diagram
	USART block diagram		DAC block diagram
	I ² C-bus configuration		Comparator block diagram
	I ² C serial interface block diagram		Boot process flowchart
	Arbitration procedure		IAP parameter passing
	Serial clock synchronization		Algorithm for generating a 128-bit signature 261
	Format in the Master Transmitter mode		Integer division routines pointer structure 263
	Format of Master Receiver mode		I2C-bus driver routines pointer structure 266
Fig 25.	A Master Receiver switches to Master Transmitter		I2C slave mode set-up address packing 276
Eig 26	after sending Repeated START		Power profiles pointer structure
	Format of Slave Receiver mode		Clock configuration for power API use 281
	Format of Slave Transmitter mode		Power profiles usage
	Format and states in Master Receiver mode138	rig oo.	Connecting the SWD pins to a standard SWD
	Format and states in Slave Receiver mode142	Fig 60	connector
-	Format and states in Slave Receiver mode145		Processor core register set
	Simultaneous Repeated START conditions from two		APSR, IPSR, EPSR register bit assignments . 296
1 lg 32.	masters147		Memory ordering restrictions301
Eig 22	Forced access to a busy I ² C-bus		
•			Little-endian format
Fig 34.	Recovering from a bus obstruction caused by a LOW level on SDA148		Exception entry stack contents
Eig 25	Texas Instruments Synchronous Serial Frame		ASR #3
Fig 33.	Format: a) Single and b) Continuous/back-to-back	3	LSR #3
	Two Frames Transfer		LSL #3
Eig 26	SPI frame format with CPOL=0 and CPHA=0 (a)		ROR #3
Fig 30.	Single and b) Continuous Transfer)166	Fig 90	IPR register
Eig 27	SPI frame format with CPOL=0 and CPHA=1167	rig ou.	IF N Tegister
-	SPI frame format with CPOL = 1 and CPHA = 0 (a)		
1 lg 30.	Single and b) Continuous Transfer)168		
Fig 30	SPI Frame Format with CPOL=1 and CPHA=1.169		
•	Microwire frame format (single transfer) 170		
	Microwire frame format (single transfer) 170 Microwire frame format (continuos transfers) 170		
	Microwire frame format setup and hold details .171		
	Sample PWM waveforms with a PWM cycle length		
ı ıy 4 3.	of 100 (selected by MR2) and MAT2:0 enabled as		
	PWM outputs by the PWMC register 184		
Fig 44	A timer cycle in which PR=2. MRx=6. and both		
1 IU ++			

Chapter 26: Supplementary information

26.5 Contents

Chap	ter 1: Introductory information				
1.1	Introduction	3	1.4	Block diagram	. 6
1.2	Features		1.5	Configurable analog/mixed-signal	
1.3	Ordering information	5		subsystems	
			1.6	ARM Cortex-M0 processor	. 7
Chap	ter 2: LPC11Axx Memory map				
2.1	How to read this chapter	8	2.2	Memory map	. 8
Chap	ter 3: LPC11Axx System configuration				
3.1	How to read this chapter	10	3.5.23	POR captured PIO status register 1	
3.2	Introduction	10	3.5.24	Brown-out Detect register	
3.3	Pin description	10	3.5.25	System tick counter calibration register	
3.4	Clocking and Power Control	10	3.5.26	NMI source selection register	
3.4.1	Clocking		3.5.27 3.5.28	Pin interrupt select registers	
3.4.2	Power Control		3.5.28	Power configuration register	
3.5	Register description			Device ID register	
3.5.1	System memory remap register		3.6	Reset	
3.5.2	Peripheral reset control register		3.6.1	Under-Voltage Lockout (UVLO) reset behavior	
3.5.3	System PLL control register		3.7	Brown-out detection	
3.5.4	System PLL status register		3.8	Start-up timing	
3.5.5	System oscillator control register	15	3.9	Power management	32
3.5.6	Watchdog oscillator control register		3.9.1	Run mode	33
3.5.7	High-frequency oscillator control register		3.9.2	Sleep mode	33
3.5.8	LF oscillator control register		3.10	System PLL functional description	34
3.5.9	System reset status register		3.10.1	Lock detector	34
3.5.10	System PLL clock source select register		3.10.2	Direct output mode	
3.5.11	System PLL clock source update register		3.10.3	Power-down control	
3.5.12	Main clock source select register		3.10.4	Operating modes	
3.5.13 3.5.14	Main clock source update enable register System clock divider register		3.10.5	Divider ratio programming	
3.5.15	System clock divided register			Post divider	
3.5.16	SSP0 clock divider register			Feedback divider	
3.5.17	UART clock divider register		3.10.6	Changing the divider values	
3.5.18	SSP1 clock divider register		3.10.6	Frequency selection	
3.5.19	CLKOUT clock source select register		3.10.6.2		
3.5.20	CLKOUT clock source update enable register		3.11	Flash memory access	
3.5.21	CLKOUT clock divider register	25	3.11	riasii illelilory access	30
3.5.22	POR captured PIO status register 0	25			
Chap	ter 4: LPC11Axx Interrupt controller				
4.1	Introduction	37	4.3	Interrupt sources	37
4.2	Features				٠.
	ter 5: LPC11Axx General Purpose I/O ()		
	· · · · · ·			CDIO part factures	40
5.1	How to read this chapter		5.3.3	GPIO port features	
5.2	Basic configuration		5.4	Introduction	
5.3	Features		5.4.1	GPIO pin interrupts	
5.3.1	GPIO pin interrupt features		5.4.2	GPIO group interrupt	
5.3.2	GPIO group interrupt features	39	5.4.3	GPIO port	40

5.5	Register description	40	5.5.2.2	GPIO grouped interrupt port polarity registers	
5.5.1	GPIO pin interrupts register description		5.5.2.3	GPIO grouped interrupt port enable registers	
5.5.1.1	Pin interrupt mode register		5.5.3	GPIO port register description	
5.5.1.2	Pin interrupt level (rising edge) interrupt enable	9	5.5.3.1	GPIO port byte pin registers	
	register	43	5.5.3.2	GPIO port word pin registers	
5.5.1.3	Pin interrupt level (rising edge) interrupt set		5.5.3.3	GPIO port direction registers	
	register	43	5.5.3.4	GPIO port mask registers 5	
5.5.1.4	Pin interrupt level (rising edge interrupt) clear		5.5.3.5	GPIO port pin registers	51
	register	44	5.5.3.6	GPIO masked port pin registers	51
5.5.1.5	Pin interrupt active level (falling edge) interrupt	t	5.5.3.7	GPIO port set registers	52
	enable register	44	5.5.3.8	GPIO port clear registers	52
5.5.1.6	Pin interrupt active level (falling edge) interrupt	set	5.5.3.9	GPIO port toggle registers	52
	register	45	5.6 F	Functional description	53
5.5.1.7	Pin interrupt active level (falling edge interrupt))	5.6.1	Reading pin state	
	clear register	45	5.6.2	GPIO output	
5.5.1.8	Pin interrupt rising edge register		5.6.3	Masked I/O	
5.5.1.9	Pin interrupt falling edge register		5.6.4	GPIO Interrupts	
5.5.1.10	Pin interrupt status register		5.6.4.1	Pin interrupts	
5.5.2	GPIO GROUP0/GROUP1 interrupt register		5.6.4.2	Group interrupts	
	description	. —	5.6.5	Recommended practices	
5.5.2.1	Grouped interrupt control register				
Chapte	er 6: LPC11Axx I/O configuration				
					_
	How to read this chapter		6.3.7	Output slew rate	
6.2	Introduction	50	6.3.8	Open-Drain Mode	
6.3	General description	56	6.3.9	RESET (pin RESET/PIO0_0)	
6.3.1	Pin function.	57	6.4 F	Register description	59
6.3.2	Pin mode		6.4.1	I/O configuration registers 6	31
6.3.3	Hysteresis		6.4.1.1	Type D IOCON registers 6	
6.3.4	Input inversion		6.4.1.2	Type I IOCON registers	33
6.3.5	Analog/digital mode		6.4.1.3	Type A IOCON registers 6	34
6.3.6	I ² C mode				
Chapte	er 7: LPC11Axx Pin configuration				
-	Pin configuration	cc	7.2 I	Pin description	-7
	_			•) [
Chapte	er 8: LPC11Axx Universal Synchrono	us/As	ynchroi	nous Receiver/ Transmitter (USART)	_
	How to read this chapter		8.5.8	USART Line Control Register	
8.2	Basic configuration	84	8.5.9	USART Line Status Register (LSR - 0x4000 8014	
8.3	Features	84		Read Only) 9	
8.4	Pin description	24	8.5.10	USART Modem Status Register) 6
	Register description		8.5.11	USART Scratch Pad Register (SCR -	
8.5.1	USART Receiver Buffer Register (DLAB = 0,	05	0 = 40		97
0.3.1	Read Only)	96	8.5.12	USART Auto-baud Control Register (ACR -	_
8.5.2	USART Transmitter Holding Register (DLAB =		0 = 40	,	97
0.5.2			8.5.13		98
8.5.3	Write Only)		8.5.14		99
0.0.0	(DLAB = 1)		8.5.15	IrDA Control Register (ICR - 0x4000 8024) . 10	JÜ
8.5.4	USART Interrupt Enable Register (DLAB = 0)		8.5.16	USART Fractional Divider Register (FDR -	24
8.5.5	USART Interrupt Identification Register		0 5 40 4	/)1
8.5.6	USART FIFO Control Register	90	8.5.16.1)2
8.5.7	USART Modem Control Register		0.5.10.1.	1 Example 1: UART_PCLK = 14.7456 MHz, BR =	
8.5.7.1	Auto-flow control		05161)4
8.5.7.1.1			0.0.10.1.	2 Example 2: UART_PCLK = 12.0 MHz, BR = 115200)4
	2 Auto-CTS	-		110200	<i>)</i> +

8.5.17 8.5.18 8.5.19 8.5.19.1 8.5.19.2 8.5.20 8.5.21 8.5.22 Chapt		5 6 6 7 8.5.24 3 8.6	RS-485/EIA-485 modes of operation
		1 0102	Slave Receiver mode
9.1 9.2	How to read this chapter		Slave Transmitter mode
9.3	Features	. 0405	Miscellaneous states
9.4	Applications	9.10.5.1	
9.5	General description	_ 3.10.3.2	
9.5.1	I ² C Fast-mode Plus	_ 0.10.0	Some special cases
9.6	Pin description	00.0	Simultaneous Repeated START conditions from two masters
9.6.1	External Pull-ups		
9.7	Register description		_
9.7.1	I ² C Control Set register (CONSET)	0 40 6 4	
9.7.2	I ² C Status register (STAT)	9.10.6.5	
9.7.3	I ² C Data register (DAT)	9.10.7	I ² C state service routines
9.7.4	I ² C Slave Address register 0 (ADR0) 119	9.10.8 9.10.9	Initialization
9.7.5	I ² C SCL HIGH and LOW duty cycle registers	9.10.9	I ² C interrupt service
	(SCLH - 0x4000 0010 and SCLL- 0x4000	0.10.11	Adapting state services to an application 149
9.7.5.1	0014)	9.11	Software example
3.7.3.1	cycle		Initialization routine
9.7.6	I ² C Control Clear register (CONCLR) 120		Start Master Transmit function 149
9.7.7	I ² C Monitor mode control register (MMCTRL) 121		Start Master Receive function
9.7.7.1	Interrupt in Monitor mode		I ² C interrupt routine
9.7.7.2	Loss of arbitration in Monitor mode 122	0 44 = 4	Non mode specific states
9.7.8 9.7.9	I ² C Slave Address registers (ADR[1, 2, 3]) 122		State: 0x00 150 Master States 150
9.7.10	I ² C Data buffer register (DATA_BUFFER) 123 I ² C Mask registers (MASK[0, 1, 2, 3]) 123		
9.8	Functional description 124	0.44.5.4	State: 0x10
9.8.1	Input filters and output stages	0 44 6	Master Transmitter states 151
9.8.2	Address Registers, ADR0 to ADR3 126	9.11.6.1	State: 0x18
9.8.3	Address masks, MASK0 to MASK3 126	9.11.6.2	State: 0x20
9.8.4	Comparator		State: 0x28
9.8.5	Shift register, DAT	0 11 6 5	State: 0x38
9.8.6	Arbitration and synchronization logic 126	0 11 7	Master Receive states
9.8.7 9.8.8	Serial clock generator	0 11 7 1	State: 0x40
9.8.9	Control register, CONSET and CONCLR 128		State: 0x48
9.8.10	Status decoder and status register	9.11.7.3	State: 0x50
9.9	I ² C operating modes	9.11.7.4	
9.9.1	Master Transmitter mode	3.11.0 3 9.11.8.1	Slave Receiver states 153 State: 0x60 153
9.9.2	Master Receiver mode	9 11 8 2	
9.9.3	Slave Receiver mode) a 11 8 3	State: 0x70
9.9.4	Slave Transmitter mode	9.11.0.4	State: 0x78
9.10	Details of I ² C operating modes		State: 0x80
9.10.1 9.10.2	Master Transmitter mode		State: 0x88
J. 1U.Z	Master Receiver mode 130	,	

9.11.8.7 9.11.8.8 9.11.8.9 9.11.9 9.11.9.1		155 155 155	9.11.9.2 9.11.9.3 9.11.9.4 9.11.9.5	State: 0xB8	155 156
	er 10: LPC11Axx SPI/SSP	100			
10.1 10.2 10.3	How to read this chapter Features General description	157 157	10.6.9 10.7 10.7.1	SPI/SSP Interrupt Clear Register Functional description Texas Instruments synchronous serial frame format	165
1 0.4 1 0.5 1 0.6 10.6.1	Pin description	159 159	10.7.2	SPI frame format	165 HA) 166
10.6.1 10.6.2 10.6.3 10.6.4 10.6.5 10.6.6 10.6.7	SPI/SSP Control Register 1 SPI/SSP Data Register SPI/SSP Status Register SPI/SSP Clock Prescale Register SPI/SSP Interrupt Mask Set/Clear Register SPI/SSP Raw Interrupt Status Register SPI/SSP Masked Interrupt Status Register	161 161 162 162 163 163	10.7.2.2 10.7.2.3 10.7.2.4 10.7.2.5 10.7.3 10.7.3.1	SPI format with CPOL=0,CPHA=1 SPI format with CPOL = 1,CPHA = 0 SPI format with CPOL = 1,CPHA = 1 National Semiconductor Microwire Format.	169 170 า
Chapte	er 11: LPC11Axx 16-bit counter/time	(CT16	B0/1)		
11.2 11.3 11.4 11.5 11.6 11.7 11.7.1 11.7.2 11.7.3 11.7.4	How to read this chapter. Basic configuration. Features. Applications. Description. Pin description. Register description Interrupt Registers (IR) Timer Control Register (TCR). Timer Counter registers (TC) Prescale Register (PR). er 12: LPC11Axx 32 bit counter/times	172 172 173 173 173 175 175 175 176	11.7.5 11.7.6 11.7.7 11.7.8 11.7.9 11.7.10 11.7.11 11.7.12 11.7.13 11.8 11.9	Prescale Counter register (PC) Match Control Register (MCR). Match Registers (MR0/1/2/3). Capture Control Register (CCR). Capture Registers (CR0/1/2/3). External Match Register (EMR). Count Control Register (CTCR). PWM Control register (PWMC). Rules for single edge controlled PWMs. Example timer operation. Architecture.	176 178 178 179 180 181 183 183
12.5 12.6 12.7 12.7.1 12.7.2 12.7.3 12.7.4	How to read this chapter. Basic configuration. Features Applications Description. Pin description Register description Interrupt Registers (IR) Timer Control Register (TCR) Timer Counter (TC) Prescale Register (PR)	187 187 188 188 188 190 190	12.7.5 12.7.6 12.7.7 12.7.8 12.7.9 12.7.10 12.7.11 12.7.12 12.7.13 12.8 12.9	Prescale Counter Register (PC) Match Control Register (MCR) Match Registers (MR0/1/2/3) Capture Control Registers (CCR) Capture Registers (CR) External Match Register (EMR) Count Control Register (CTCR). PWM Control Register (PWMC). Rules for single edge controlled PWMs Example timer operation Architecture	191 192 193 194 194 196 197 198 199
	er 13: LPC11Axx System tick timer How to read this chapter	201	13.4	Operation	201
13.2 13.3	Features Description	201	13.5	Register description	

13.5.1	System Timer Control and status register (STCTRL - 0xE000 E010) 202	13.5.3	System Timer Current value register (STCUR 0xE000 E018)	R - 203
13.5.2	System Timer Reload value register (STRELOAD - 0xE000 E014)	13.5.4	System Timer Calibration value register	203
Chapt	ter 14: LPC11Axx WatchDog Timer (WDT)			
14.1	How to read this chapter 205	14.6.4	3 ,	209
14.2	Features	14.6.5	Watchdog Clock Select register	240
14.3	Applications	14.6.6	(WDCLKSEL)	210
14.4	Description	14.0.0	0 . 0	210
14.5	Clocking and power control 206	14.6.7	Watchdog Timer Window register	
14.6	Register description		(WDWINDOW)	
14.6.1	Watchdog Mode register (WDMOD) 207	14.7	Block diagram	
14.6.2 14.6.3	Watchdog Timer Constant register (WDTC). 208 Watchdog Feed register (WDFEED) 209	14.8	Watchdog timing examples	211
Chapt	ter 15: LPC11Axx Temperature sensor			
15.1	How to read this chapter 213	15.4	General description	
15.2	Basic configuration 213	15.5	Operation	
15.3	Features	15.6	Register description	213
Chapt	ter 16: LPC11Axx Analog-to-Digital Conve	rter (AD	C)	
16.1	How to read this chapter 214	16.6.4	A/D Status Register (STAT)	220
16.2	Basic configuration	16.6.5	1 5 ,	221
16.3	Features	16.6.6	A/D Data Registers (DR0 to DR7)	
16.4	Pin description	16.7	•	222
16.5	Block diagram 216	16.7.1 16.7.2	Hardware-triggered conversion	222
16.6	Register description	16.7.2	Accuracy vs. digital receiver	
16.6.1	A/D Control Register (CR) 217	16.7.4	Sampling/Conversion frequency	
16.6.2 16.6.3	A/D Global Data Register (GDR) 219 A/D Select Register (SEL) 220			
Chapt	ter 17: LPC11Axx Digital-to-Analog Conve	rter (DA	C)	
17.1	How to read this chapter	17.5.1	D/A Control Register (CR)	224
17.2	Basic configuration	17.5.2	Power-Down Control	
17.3	Features	17.6	Operation	225
17.4	Pin description	17.6.1	Hardware-triggered conversion	225
5	Register description 223	17.6.2	•	225
		7	Block diagram	226
Chapt	ter 18: LPC11Axx Analog comparator			
18.1	How to read this chapter 227	18.6.1	1	229
18.2	Basic configuration 227	18.6.2	5 ,	230
18.3	Features	18.7	•	231
18.4	General description	18.7.1 18.7.2	•	231 231
18.5	Pin description	18.7.3	•	231
18.6	Register description	18.7.4	•	231
Chapt	ter 19: LPC11Axx Internal voltage reference	се		
19.1	How to read this chapter 232	19.2	Features	232

19.3 19.4	General description		19.5	Functional description	232			
Chapter 20: LPC11Axx Flash/EEPROM programming firmware								
20.1 20.2 20.3 20.4 20.5 20.5.1.1 20.5.2.1 20.5.2.2 20.5.2.3 20.5.2.4 20.5.2.5 20.5.2.5 20.5.2.5 20.5.2.5 20.5.2.6 20.5.2.7 20.5.2.8	How to read this chapter Boot loader Features Applications Description Memory map after any reset. Criterion for Valid User Code Communication protocol. Connections ISP command format ISP response format. ISP data format. ISP flow control. ISP command abort Interrupts during ISP. Interrupts during IAP.	233 233 233 234 234 234 235 235 235 235 235 235 235 237 237 238 241 241 241 242	20.7.11 20.7.12 20.7.13 20.7.14 20.7.15 20.8 20.8.1 20.8.2 20.8.3 20.8.4 20.8.5 20.8.6 20.8.7 20.8.8 20.8.10 20.8.11 20.8.12 20.9	Read Part Identification number Read Boot code version number Compare <address1> <address2> <# bytes> ReadUID ISP Return Codes IAP commands Prepare sector(s) for write operation Copy RAM to flash Erase Sector(s) Blank check sector(s) Read Part Identification number Read Boot code version number Compare <address1> <address2> <# bytes> Reinvoke ISP Read UID Write EEPROM Read EEPROM IAP Status Codes Debug notes Comparing flash images Serial Wire Debug (SWD) flash programming interface Flash controller registers Flash signature generation Signature generation address and control</address2></address1></address2></address1>	246 247 247 248 250 251 252 252 252 253 253 253 254 254 255 255 255 256 256			
20.7.4 20.7.5 20.7.6 20.7.7 20.7.8 20.7.9 20.7.10	Write to RAM <start address=""> <# bytes> Read Memory <address> <no. bytes="" of=""> Prepare sector(s) for write operation <start number="" se=""> <end number="" sector=""></end></start></no.></address></start>	242 243 ector 243 244 245 245	20.10.4 20.10.5 20.10.6 20.10.7 20.10.8 20.10.9 20.10.10	Signature generation result registers EEPROM BIST start address register EEPROM BIST stop address register EEPROM signature register Flash module status register Flash module status clear register	260 260 260			
Chapt	er 21: LPC11Axx Integer division rou	itines						
21.1 21.2 21.3 21.4	How to read this chapter Features General description API description	262 262 263	21.4.1 21.4.1.1 21.4.1.2 21.4.1.3	Examples	263 264			
Chapt	er 22: LPC11Axx I2C-bus ROM driver	r routir	nes					
22.1 22.2 22.3 22.4 22.4.1	How to read this chapter. Features General description I2C ROM driver variables	265 265 266	22.4.1.1 22.4.2 22.4.3 22.4.4 22.4.5	PARAM and RESULT structure				

22.4.6 22.4.7 22.4.8	API function table 273 I2C Set-up 274 I2C Master mode set-up 275	22.4.9 22.4.10 22.4.11	I2C Slave mode set-up 2 I2C Master Transmit/Receive 2 The I2C Slave Mode Transmit/Receive 2	276
Chapt	er 23: LPC11Axx Power profiles			
23.1	How to read this chapter 280	23.5.1.4.4	System clock less than or equal to the expecte	
23.2	Features			284
23.3	General description 280	23.5.1.4.5	System clock greater than or equal to the	
23.4	Definitions	00.54.4.0	•	284
23.5	Clocking routine 281	23.5.1.4.6	S System clock approximately equal to the	205
23.5.1	set_pll		•	285
23.5.1.1	•			285
20.0.1.1	Param1: expected system clock 282	23.6.1	—·	285
23.5.1.2		23.6.1.1	Param0: main clock	
23.5.1.3		23.6.1.2	Param1: mode	
23.5.1.4		23.6.1.3	Param2: system clock	
	.1 Invalid frequency (device maximum clock rate		•	
	exceeded)	23.6.1.4.1	Invalid frequency (device maximum clock rate	
23.5.1.4	.2 Invalid frequency selection (system clock divider	22 6 1 4 2	exceeded)	
	restrictions)	23.0.1.4.2	2 An applicable power setup	201
23.5.1.4	3. Exact solution cannot be found (PLL) 284			
Chapt	er 24: LPC11Axx Serial wire debug			
24.1	How to read this chapter	24.5 F	unctional description	290
24.2	Features	24.5.1	Debug limitations	
		24.5.2	Systick timer in debug mode	
24.3	General description	24.5.3	Debug connections for SWD	
24.4	Pin description	24.5.4		291
Chapt	er 25: Appendix: LPC11Axx ARM Cortex-I	M0 Refere	·	
25.1	How to read this chapter	25.3.2.2		301
25.2		25.3.2.2		301
25.2	About the Cortex-M0 processor and core	25.3.2.4		302
05.04	peripherals	25.3.2.5		303
25.2.1	System-level interface			303
25.2.2 25.2.3	Integrated configurable debug	25.3.3	Exception model	
25.2.3 25.2.4	Cortex-M0 processor features summary 293 Cortex-M0 core peripherals 293	25.3.3.1	Exception states	
	·	25.3.3.2		304
25.3	Processor	25.3.3.3		305
25.3.1	Programmers model	25.3.3.4		305
25.3.1.1		25.3.3.5	Exception priorities	306
25.3.1.2		25.3.3.6		307
25.3.1.3	•	25.3.3.6.1	Exception entry 3	307
	3.1 General-purpose registers	25.3.3.6.2	2 Exception return	308
	3.2 Stack Pointer	25.3.4	Fault handling	309
	3.3 Link Register	25.3.4.1	Lockup	309
	3.4 Program Counter	25.3.5	•	310
	3.6 Exception mask register	25.3.5.1	5 1	310
	B.7 CONTROL register		· · · · · · · · · · · · · · · · · · ·	310
25.3.1.4			Wait for event	
25.3.1.5			3 Sleep-on-exit	
25.3.1.6			Wakeup from sleep mode	
	Standard		Wakeup from WFI or sleep-on-exit	
25.3.2	Memory model		2 Wakeup from WFE	
25.3.2.1		25.3.5.3	Power management programming hints 3	311

Chapter 26: Supplementary information

25.4 In	struction set	311	25.4.4.6.3 F	Restrictions	325
25.4.1	Instruction set summary	311	25.4.4.6.4	Condition flags	325
	Intrinsic functions		25.4.4.6.5 E	Examples	326
25.4.3	About the instruction descriptions	315	25.4.5	General data processing instructions	326
	Operands		25.4.5.1 A	ADC, ADD, RSB, SBC, and SUB	326
	Restrictions when using PC or SP	315	25.4.5.1.1	Syntax	326
	Shift Operations	316		Operation	327
	ASR	316		Restrictions	327
	LSR		25.4.5.1.4 E	Examples	328
	LSL			AND, ORR, EOR, and BIC	
	ROR			Syntax	
	Address alignment			Operation	
	PC-relative expressions			Restrictions	
	Conditional execution			Condition flags	
	The condition flags			Examples	
	Condition code suffixes			ASR, LSL, LSR, and ROR	
	Memory access instructions			Syntax	
-	ADR	320		Operation	
		320		Restrictions	
	Operation			Condition flags	
	Restrictions			Examples	
	Condition flags			CMP and CMN	
	Examples			Syntax	
	LDR and STR, immediate offset			Operation	
	Syntax			Restrictions	
	Operation			Condition flags	
	Restrictions			Examples	
	Condition flags			MOV and MVN	
				Syntax	
	LDR and STR, register offset	322		Operation	
	_	322		Restrictions	
	Operation	_		Condition flags	
	Restrictions			Example	
	Condition flags			MULS	
	Examples			Syntax	
	LDR, PC-relative			Operation	
		323		Restrictions	
	Operation			Condition flags	
	Restrictions			Examples	
	Condition flags				
	Examples	323		Syntax	333
25.4.4.5	LDM and STM			Operation	
	Syntax				
	Operation				334
	Restrictions			Examples	334
	Condition flags			SXT and UXT	334
	Examples			Syntax	334
	Incorrect examples	325		Operation	334
	PUSH and POP	325		Restrictions	334
	Syntax				334
	Operation			Examples	
		J_U			

continued >>

25.4.5.9	TST	334	25.4.7.8.2	Operation	341
	Syntax			Restrictions	
	Operation			Condition flags	
	Restrictions			Examples	
	Condition flags			SEV	
	Examples			Syntax	-
25.4.5.9.5 25.4.6	Branch and control instructions			Operation	
				Restrictions	
	• • •				
	Syntax			Condition flags	
	Operation			Examples	
	Restrictions			SVC	
	Condition flags			1 Syntax	
	Examples			2 Operation	
25.4.7	Miscellaneous instructions			3 Restrictions	
				4 Condition flags	
	Syntax		25.4.7.10.	5 Examples	342
	Operation			WFE	
25.4.7.1.3	Restrictions	338	25.4.7.11.1	1 Syntax	
25.4.7.1.4	Condition flags	338		2 Operation	
25.4.7.1.5	Examples	338	25.4.7.11.3	3 Restrictions	343
25.4.7.2	CPS	338	25.4.7.11.4	4 Condition flags	343
25.4.7.2.1	Syntax	338		5 Examples	
25.4.7.2.2	Operation	338	25.4.7.12	WFI	343
	Restrictions		25.4.7.12.	1 Syntax	343
	Condition flags			2 Operation	
	Examples			3 Restrictions	
	DMB		25.4.7.12.4	4 Condition flags	344
	Syntax			5 Examples	
	Operation			eripherals	
	Restrictions			About the ARM Cortex-M0	
	Condition flags			Nested Vectored Interrupt Controller	344
	Examples			Accessing the Cortex-M0 NVIC registers using	-
	DSB			CMSIS	345
25.4.7.4.1	Syntax	339		Interrupt Set-enable Register	345
	Operation			Interrupt Clear-enable Register	346
	Restrictions			Interrupt Set-pending Register	346
	Condition flags			Interrupt Clear-pending Register	346
	Examples			Interrupt Priority Registers	347
	ISB			Level-sensitive and pulse interrupts	348
	Syntax			Hardware and software control of interrupts	348
	Operation			NVIC usage hints and tips	
	Restrictions			NVIC dsage fills and tips	
	Condition flags			System Control Block	349
	Examples			CMSIS mapping of Cortex-M0 SCB registers	
				CPUID Register	
	Syntax			3	350
	Operation			Interrupt Control and State Register Application Interrupt/Paget Control Pagister	350
	Restrictions			Application Interrupt/Reset Control Register	352
	Condition flags			System Control Register	353
	Examples			Configuration and Control Register	353
	MSR			System Handler Priority Registers	354
	Syntax			System Handler Priority Register 2	354
	P. Operation			System Handler Priority Register 3	354 355
	Restrictions			SCB usage hints and tips	355
	Condition flags			System timer, SysTick	355
	Examples			•	356
25.4.7.8				SysTick Reload Value Register Calculating the RELOAD value	
	Syntax			SysTick Current Value Register	
	•		ZJ.J.4.J	Cyanick Cultelli value Neglatel	550

Chapter 26: Supplementary information

	SysTick Calibration Value Register SysTick usage hints and tips		25.6	Cortex-M0 instruction summary	358		
Chapter 26: Supplementary information							
26.1	Abbreviations	361	26.3	Tables	363		
26.2	Legal information	362	26.4	Figures	369		
26.2.1	Definitions	362	26.5	Contents	370		
26.2.2	Disclaimers	362					
26.2.3	Trademarks	362					

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.